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Abstract
In the mathematical description of dynamic atomic force microscopy (AFM), the relation between the tip–surface normal interac-
tion force, the measurement observables, and the probe excitation parameters is defined by an average of the normal force along the
sampling path over the oscillation cycle. Usually, it is tacitly assumed that tip oscillation and force data recording follows the same
path perpendicular to the surface. Experimentally, however, the sampling path representing the tip oscillating trajectory is often
inclined with respect to the surface normal and the data recording path. Here, we extend the mathematical description of dynamic
AFM to include the case of an inclined sampling path. We find that the inclination of the tip movement can have critical conse-
quences for data interpretation, especially for measurements on nanostructured surfaces exhibiting significant lateral force compo-
nents. Inclination effects are illustrated by simulation results that resemble the representative experimental conditions of measuring
a heterogeneous atomic surface. We propose to measure the AFM observables along a path parallel to the oscillation direction in
order to reliably recover the force along this direction.
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Introduction
Atomic force microscopy (AFM) is a quantitative technique that
allows for probing the force field above a surface in one, two, or
three dimensions. While imaging in a plane parallel to the sur-
face provides nanoscale and atomic structural information [1],
force curves, usually acquired along a recording path
perpendicular to the surface, provide quantitative information
about the details of the tip–surface interaction when properly
analysed [2]. Recently, a universal description of quantitative

dynamic force microscopy based on the harmonic approxima-
tion has been developed [3], yielding three central equations
that link the physical interaction parameters force  and
damping  with the measurement observables static deflec-
tion qs, oscillation amplitude A, and phase φ as well as the exci-
tation parameters frequency fexc and force Fexc. This theory
specifically predicts the distant-dependent frequency shift of a
tip moved perpendicular to a surface for a given force curve.

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Figure 1: Coordinates describing the one-dimensional tip positioning and movement. See main text for description.

Inversion formulae are available that allow for the extraction of
the interaction force from measured frequency-shift data [4,5].

A tacit assumption of all prevalent algorithms for force inver-
sion is that the axis of data acquisition (herein denoted as the
recording path, usually the axis of the piezo scanner, zp) is
parallel to the axis of the oscillation (herein denoted as the sam-
pling path). However, in a typical experimental setup this is not
the case. Instead, angles of 10° to 20° between these two direc-
tions are often present for technical reasons. Consequences of
this inclined AFM cantilever mount have been identified before,
in particular for atomic force microscopy performed in static
(“contact”) mode where an effective spring constant [6-8] has
been introduced and a torque [9,10] as well as load [11]
correction has been applied. Additionally, a tilted cantilever has
been found to lead to a modification of the tip–sample convolu-
tion [12], to enhance the sensitivity of the measurement to the
probe side [13], and to influence results of multifrequency AFM
and Kelvin probe force microscopy [14]. In the presence of a
viscous damping layer, in-plane dissipation mechanisms have
been found to cause systematic changes of the phase shift in
amplitude-modulation AFM depending on the cantilever incli-
nation [15]. Furthermore, it has been proposed to use the pres-
ence of a lateral component in the tip oscillation path for the in-
vestigation of in-plane material properties, such as the in-plane
shear modulus [16]. Last, the influence of the inclination be-
tween oscillation direction and surface plane has been used in
lateral force microscopy to determine the probe oscillation
amplitude [17].

Here, we extend the established mathematical description for
dynamic atomic force microscopy [3] by including free orienta-
tions of the tip sampling and data recording paths. The result-
ing formulae are discussed and implications for precise force
measurements [2] are identified and quantified. Most important-
ly, the data acquisition with an inclined tip sampling path
requires modifications of the experimental procedures and data
analysis protocols for force measurements to avoid systematic
errors in the interpretation of force curve and imaging data.

Results and Discussion
Sensor positioning, sensor displacement, and
tip position
Prerequisite to quantitative force microscopy is a precise defini-
tion of the involved probe and sample coordinates as well as
probe dynamical parameters that are outlined in the following.

In dynamic AFM, the force  acting between a sharp tip and
the surface under investigation is measured as a function of the
tip position  that is usually described in Cartesian coordi-
nates with the origin placed in the sample surface and the z-axis
with unit vector  oriented perpendicular to the surface as
shown in Figure 1. Lateral movements of the tip as applied for
imaging are associated with the x and y axes, while the tip–sur-
face distance zts is measured along the z-axis. In most AFM
implementations, the force measurement is restricted to
nominally measuring the normal component of the tip–sample
force  often denoted by FN. The ideal force curve
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is a measurement of  while the measurement of
 is referred to as force mapping.

To measure the tip–surface force in a dynamic measurement,
the force probe acts as a high-Q oscillator and elastically
responds to  by static and dynamic displacement described
by  with  being the unit vector along the tip sam-
pling path. This path is usually straight and assumed to be
strictly parallel to  Furthermore, we assume an infinitely stiff
sensor in directions perpendicular to  as well as a linear
sensor response along  Then, the static probe response
follows Hooke’s law  with k being the
static sensor force constant [18]. In dynamic mode operation,
the sensor is excited to periodic displacement q(t) = q(t + 1/fexc)
along the q-axis at an excitation frequency fexc.

To bring the tip in the desired range of interaction with the sur-
face and to perform the movements required for imaging, force
mapping, and taking force curves, the sensor is moved by
coarse and fine positioning elements acting at least along the
z-axis. To accomplish this, the sensor is attached to a piezo ele-
ment allowing for fine positioning that, in turn, is attached to a
coarse positioning system. The respective sensor positioning
movements, the sensor oscillation, and its response to the mean
tip–surface force are illustrated in the sketches of Figure 1 for
the case of parallel tip sampling and data recording paths.

Initially, the sensor assembly is moved towards the surface by
the coarse positioning system so that the relaxed piezo rests at
position zcrs and the tip at its starting position z0 (Figure 1a). In
its relaxed state, the z piezo and the force sensor have a length
of  and  respectively. Applying a voltage to the z-piezo
results in an extension of the piezo length lp that is described as
a piezo position zp on the separate axis zp with unit vector 
and with the origin chosen to coincide with the zcrs position
(Figure 1b). As the unit vectors  and  are chosen to point
into the same direction, a piezo extension zp < 0 results in an
approach of the tip towards the surface while zp > 0 indicates a
tip retraction. Coarse and fine approach define the sensor posi-
tion zsen = z0 + zp, which is at this point identical to the tip posi-
tion (tip–sample distance) zts as the force Fts acting on the tip is
unmeasurably small for sufficiently large zts. Upon further ap-
proach of the sensor, however, the tip experiences a measure-
able force, yielding a static sensor displacement qs described on
the q-axis with the origin chosen at zsen, corresponding to the tip
centre position zc = zsen + qs (Figure 1c). As  and  point in
the same direction, a sensor displacement q < 0 corresponds to
a tip movement towards the surface. Note that the tip centre po-
sition zc cannot easily be set or determined as the static sensor
displacement is governed by the a priori unknown force curve.
Furthermore, qs is usually so small that it is at or beyond the

limit of detectability for most NC-AFM implementations. In
dynamic NC-AFM operation, the sensor oscillates with an
amplitude A symmetrical to the static displacement qs with
turning points qs + A and qs − A (Figure 1d). The momentary tip
position at time t can either be described as the displacement
q(t) or as the position zts(t), whereby the lower turning point

 is the point of strongest tip–surface interaction.

While the tip position and sensor dynamics can principally be
well described by the respective positions on the z-axis, this
axis is practically of limited use as its zero point cannot be
defined or determined in a reasonable way. This is due to the
fact that neither zcrs nor  can be determined with atomic-scale
precision, which would be needed for properly taking into
account the force curve  Furthermore, it is conceptu-
ally difficult to define the position of the surface at the atomic
scale. As every force curve acquired on a surface diverges for
zts → 0, the natural choice of the z-axis origin would be the z
value approached by the diverging force. This point is, howev-
er, experimentally not accessible. Instead, precise values for the
piezo position zp and the sensor displacement q(t) are experi-
mentally available. To derive a force–distance curve experimen-
tally, the usual procedure is therefore to apply dynamic AFM
and to measure the distance-dependent shift in frequency,
Δf(zp), of the sensor excitation frequency fexc that results when
phase resonance for the sensor oscillation is maintained
throughout the measurement [19]. The resulting curve Δf(zp) is
a convolution of the covered part of the force curve 
and a kernel depending on the stabilised sensor oscillation
amplitude A. A sophisticated analysis of the Δf(zp) curves
measured with different oscillation amplitudes A yields a
precise result [2] for the force curve, yet with an arbitrary origin
along the z-axis. In theoretical modelling and analysis of
tip–sample interactions, it has been established as a standard to
represent force curves as  [4,5]. As  is prac-
tically not accessible, for the representation of force curves we
introduce an axis ztip that is identical to the z-axis except for an
unknown offset δz0 for the tip starting position and describe a
force curve resulting from the analysis of measured data as

 where 

Geometry for the inclined sampling path
A tip sampling path inclined relative to the z-axis implies that
the direction of oscillation  is tilted with respect to  as illus-
trated in Figure 2. We introduce the inclined axis w parallel to
the tip sampling path with  pointing in the direction of 
Assuming an inclination angle of α (with 0 ≤ α ≤ π/2) between

 and  any position on the w-axis can be expressed by the
respective position on the ztip-axis by a simple geometrical
transformation. This implies that any sensor movement along zp
is not in line with the tip sampling path. Therefore, one has to
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take into account that the inclined oscillatory motion of the
sensor can invoke significant lateral movement of the tip when
describing the Δf signal formation and force deconvolution. If
the force field  above the surface is
homogeneous and isotropic with respect to the lateral coordi-
nates xts and yts, the inclined axis of sensor oscillation can
be taken into account by using transformed position variables
zp → zp cosα or ztip → ztip cosα.

Figure 2: Coordinate system for considering an inclined oscillation by
introducing the vector  and the axis w.

If no such homogeneity is present, however, the w-axis has to
be taken explicitly into account. The definition of a zero posi-
tion of this w-axis goes along the same lines as the definition of
zero δz0 for the ztip-axis by introducing  and the uncer-
tainty δw0.

For the further discussion, we define the vectorial sensor dis-
placement  as

(1)

Within the harmonic approximation [3], q(t) is given as

(2)

with the static deflection qs, the oscillation amplitude A, the ex-
citation frequency fexc, and the phase φ [3]. In its vectorial

form, the momentary position of the tip  is given as

(3)

(4)

with the centre position  start position  and
piezo position  These quantities generalise the previously
introduced z coordinates zc, z0, and zp, respectively. We further
introduce the reduced amplitude Az as the projection of A on the
surface normal [2]

(5)

Equation of motion for the inclined sampling
path
Next, we derive the three AFM equations [3] linking the AFM
physical parameters with the experimental observables and ex-
citation parameters for a straight tip sampling path with arbi-
trary oscillation direction. The starting point is the differential
equation describing the displacement q(t) in presence of the
tip–sample force field  and excitation force  as
follows

(6)

with the sensor parameters fundamental eigenfrequency f0,
modal sensor stiffness k0 [18], and modal sensor quality factor
Q0. This equation of motion is a one-dimensional differential
equation depending on the tip–sample force component

 following the description in [3,15,16]. The
vectorial tip–sample force can generally be expressed by the
sum of an even,  and an odd,  component

(7)

The deflection q is periodic with Texc =  and the tip–sam-
ple force component  can, therefore, be expressed by the
Fourier sum

(8)
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with the coefficient for n = 0

(9)

and the coefficients for n ≥ 1

(10)

(11)

With the time average defined by [3]

(12)

for an arbitrary function  with projection  the
Fourier coefficients for n ≥ 1 can be expressed in terms of time
averages

(13)

(14)

(15)

AFM equations for the inclined sampling path
The three AFM equations follow from evaluating the Fourier
coefficients   and  The first step is to cal-
culate the time-averaged form of the three equations (see
Appendix section for the derivations)

(16)

(17)

(18)

In a next step, the time averages are transformed to spatial aver-
ages similar to the formerly introduced cup and cap average
functionals [3].

The harmonic approximation constrains the tip movement
within the  phase space to a closed trajectory. Conse-
quently, the parametrisation with a spatial coordinate along
this sampling path requires a parametrisation of the velocity
by this coordinate as well. To reflect this dependency, we
introduce the even force  formally defined by

 as the force along the tip sam-
pling path. Then, we further define the projection of an arbi-
trary function  along the tip sampling path on the oscillation
direction  as  and perform the integration along
the sampling path symmetrically to the centre position  of this
projected quantity  The cup and cap averaging functionals
are then written as

(19)

(20)

These averages have now the structure of line integrals along
the tip sampling path parallel to  spanning the range −A to A
as parameterised by q′.

We furthermore define the tip–sample force gradient along the
oscillation path,  by the derivation of the force along the
oscillation direction, namely

(21)

The three AFM equations follow now from Equation 16, Equa-
tion 17, and Equation 18 as

(22)

(23)
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(24)

whereby the vectorial damping coefficient  and the damping
coefficient  along the oscillation path have been introduced
to write the odd force as

(25)

Force response for the inclined sampling
path
By reinterpreting the cup and cap averaging functionals as line
integrals along the inclined tip sampling path, three AFM equa-
tions were found that represent the general case for a probe
oscillating in an arbitrary direction. A probe orientation differ-
ent from the surface normal and its oscillation in the vector
force field above the surface has important consequences on the
measured force response and appropriate data analysis proce-
dures.

We demonstrate these consequences by simulating the frequen-
cy shift Δf = fexc − f0 in the frequency-modulated AFM mode
for different cases using a Morse potential

(26)

as a model that describes the interaction between two atoms at a
distance d by the parameters Eb = 0.371 aJ, σ0 = 0.235 nm, and
κ = 4.25 nm−1 (adapted from [20]). We use this model for the
pairwise interaction between a tip with a heterogeneous surface
section. The surface section is built by arranging Na = 5 atoms
at zts = 0 nm along the x-axis (with unit vector ) at an
atom–atom distance of da = 0.5 nm. To model a second atomic
species for the heterogeneous surface section, Eb of the central
atom is scaled by a factor of four. A sixth probe atom at posi-
tion  representing the tip is moved within the force field

 calculated from

(27)

Vector  defines the origin of the surface section. In the
following, the central atom is placed at  = (xts, yts, zts) = (0.35,
0, 0) nm. The potential VMorse and the force components

 as well as  are shown in Figure 3a, b,

and c, respectively. A vectorial representation of the force field
in the xts–zts plane is included in Figure 3a.

To illustrate the effects resulting from an inclined tip oscilla-
tion, four cases are discussed. Common to all cases is that the
data recording path, described by the oscillation centre posi-
tions  remains oriented parallel to the -axis, that is, perpen-
dicular to the surface as indicated by the dotted lines in
Figure 3b and Figure 3c. This represents the common experi-
mental protocol. In turn, the sampling path describing the tip
oscillation is inclined by different angles α within the xts–zts
plane with the normalised inclined oscillation vector  = [sinα,
0, cosα]. The tip trajectories during single oscillation cycles at
one fixed  are indicated for each case by dashed lines in
Figure 3b and Figure 3c.

The force component  along the tip path is a scalar quantity
and shown for α = 45° in Figure 3d. Compared to the vertical
component  (see Figure 3c), the shape at the atom positions
is asymmetric and the absolute contrast is diminished as a result
of projecting the vectorial force  onto 

The force gradient  along the tip path and projected to  is
calculated by numerical differentiation along  of the  force
field. The result is used to calculate frequency shift Δf data from
Equation 23 for φ = −π/2. As an example, we use parameters for
a sensor often used in low-temperature environments (tuning
fork sensor [21] with f0 = 30 kHz, k0 = 1800 N/m, and A =
0.45 nm). However, similar effects can be present when using
parameters for other sensors as well. Frequency shift Δf data are
calculated with the piezo axis located at xts = yts = 0 and moving
the tip along zp for data recording, while data are plotted as a
function of 

The solid blue curve in Figure 3e represents case (1) of a per-
pendicular oscillation with  = [0,0,1]. When positioning the
tip along the -axis for data acquisition, this case allows for a
reliable determination of the interaction force  by applying
known inversion strategies [2,4,5].

Next, the tip inclination is set to α = 12.5° within the xts–zts
plane as case (2) shown in yellow in Figure 3b and Figure 3c.
The corresponding Δf(2)( ) curve (dash-dotted yellow in
Figure 3e) is different from the blue Δf(1)( ) curve. This is
expected as the lower turning point moved sideways and the cap
averaging is performed along a different path than in case (1).
Note that in contrast to case (1), the tip sampling path has no
overlapping segments when moving the tip along zp. In case (3),
the lateral movement of the lower turning point is compensated
by subtracting the vector  = [Δx, 0, Δz] with Δx = −Asinα
and Δz = A(1 − cosα) from  The resulting Δf(3)( ) data
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Figure 3: (a) Potential, (b) lateral force component, and (c) vertical forces for a pairwise Morse interaction summed over five surface atoms (positions
of two atoms indicated by red points in (a), further atoms are located outside of the shown region to model a surface section). The sampling paths
along the oscillation (dashed lines) as well as data recording paths (dotted lines) are included for four cases in (b,c). (d) Projection of the interaction
force on the -axis. (e) Δf( ) curves calculated for four different inclination angles and starting points.

included as a dashed red curve in Figure 3e deviates from all
other curves.

When further increasing the inclination angle α as in case (4),
the deviation becomes larger as presented by the violet dotted
curve in Figure 3e for α = 45°. Last, we note that lateral compo-
nents are virtually absent for large tip–sample distances in this
model, leading to a convergence of the Δf( ) curves in the
regime  ≫ 1 nm.

Force deconvolution for the inclined sampling
path
The difference in the orientation of  and  violates a funda-
mental assumption of the commonly used inversion algorithms
[4,5]: The tip sampling path segments are not overlapping when
moving the tip along the data recording path for an inclined
oscillation. The resulting error in the force recovery is shown in
Figure 4c, where the red dashed curve presents the recovered

force for the case of an oscillation inclined by α = 12.5° and Δf
data recorded along  As is apparent, the force curve does not
match the model reference curve,  included as the
solid black line. In contrast, the force curve recovered for the
vertical oscillation and vertical data recording (  = [0,0,1],
blue curve) matches the reference curve.

As a solution to this issue, we propose to orient the recording
path for acquiring the AFM observables and parameters parallel
to the tip sampling path  describing the tip oscillation. This
modification leads to an overlap of the tip sampling path seg-
ments for nearby positions along the data recording path. There-
fore, the deconvolution using the known algorithms can be per-
formed in the usual manner. Naturally, the result will not repre-
sent the perpendicular force  but rather describes the force
component  along the w-axis, parameterised by the scalar
variable  For a conservative force field, the vertical inter-
action force could in principle be calculated from this result.
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Figure 4: (a) Heterogeneous surface potential with the tip–sample force vector field indicated by arrows (same as Figure 3a). (b) Vertical force com-
ponent with the tip sampling path (dashed lines) and data recording path (dotted lines). (c) Tip–sample forces plotted with respect to the vertical coor-
dinate  (d) Tip–sample forces plotted with respect to the parameter  along the inclined oscillation direction. Remaining small deviations be-
tween the (c) black and blue curves and (d) black and green curves are explained by the approximations present in the Sader–Jarvis algorithm [20].

Additionally, if the full force field is of interest, this can be
extracted by systematic measurements of many Δf curves using
the appropriate experimental procedures [22].

Simulation results for moving the tip along the inclined path
during data acquisition and extracting the force along this path
are presented in Figure 4d by the green curve. The force along
this data recording path is correctly recovered as shown in
Figure 4d where the green dash-dotted curve closely matches
the model curve (in solid black) extracted along this path. Note
that the force along an inclined w-axis is different from the
vertical interaction force along 

Conclusion
Several conclusions can be drawn from extending the mathe-
matical description of dynamic force microscopy by arbitrary
tip sampling and data recording paths. For a typical inclination
of α = 12.5°, the minimum force was calculated to differ by

more than 5% when compared to a result not taking the inclina-
tion into account. The magnitude of this difference depends on
the model parameter choice and geometry: The difference can
be amplified or reduced depending on the oscillation amplitude,
on the interaction potential strength and decay, as well as on the
atomic geometry. For example, edges of finite atomic slabs or
larger atomic clusters generate significant effects. In practice, a
model calculation is required to determine the uncertainty in the
measured force due to the inclined tip oscillation.

Precise forces are measured if the data recording path, here
introduced as the axis w, is aligned parallel to the tip sampling
path, here described as the vector  The resulting measured
force represents the component  of the tip–sample force
along this direction. Despite the formal and quantitative differ-
ence from the commonly considered vertical component

 the component along w delivers identical physical
insights into the tip–sample interaction.
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Appendix: Mathematical Derivations
AFM Equation 1
The first AFM equation follows from evaluating the Fourier
coefficient  defined by

(28)

The tip–sample force can furthermore be written as a sum of an
even and an odd force

(29)

By definition of an odd force, the time average  eval-
uates to zero. We compare this equation by introducing the
equation of motion (Equation 6) for  and using the fact that
the time average is a linear functional

(30)

With the harmonic approximation (Equation 2) it can directly
be shown that  and qs = ⟨q⟩t. The first
AFM equation directly follows as

(31)

AFM Equation 2
The Fourier coefficient  is defined as

(32)

Within the harmonic approximation (Equation 2), this term can
be written as

(33)

and  be expressed by even and odd forces

(34)

whereby the average  evaluates to zero.
Using the equation of motion (Equation 6), the Fourier coeffi-
cient can be written as

(35)

In full analogy to [3], this equation evaluates to

(36)

whereby the identities 
are used.

AFM Equation 3
The Fourier coefficient  is defined as

(37)

which can be written as

(38)

by using the harmonic approximation, Equation 2. The force is
again expressed as a sum of even and odd contributions

(39)

whereby  evaluates to zero. Using the equation of
motion, Equation 6, this is equal to

(40)

With the identities  this term evaluates to

(41)
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