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A simple dispersion equation for surface thermal waves propagating along a solid surface covered 
with a thin film of higher thermal conductivity is presented. It is shown to describe well phase 
measurements with a photothermal microscope carried out on metal films on glass substrates. 
0 1995 American Institute of Physics. 

The evaluation of the thermal properties of thin films is a _ 
problem of great importance,“’ and recently there has been 
growing interest in this area in application to diamond films.3 
Among the techniques for thermal measurements at solid 
surfaces, thermal waves generated and detected optically 
have attracted great interest.4-6 A classical thermal wave 
method for thermal diffusivity measurements’ is based on a 
simple dispersion relation for harmonic heat diffusion waves 
in a homogeneous isotropic solid: 

q2=iw/K, (1) 

where K is the thermal diffusivity, w and q are the angular 
frequency and the wave number, with the temperature field 
in a one-dimensional wave having an appearance T 
mexp(iqx-iot). Thus, it is straightforward to obtain the ther- 
mal diffusivity by measuring the phase lag in the thermal 
wave’ A 0= (o/2 K) ‘I2 Ax. A modern version of this phase 
lag technique for photothermal microscopy at surfaces is de- 
scribed in Ref. 8, where the phase of a thermal wave, excited 
by a focused modulated laser beam and propagating along 
the surface, is measured with a probe beam via modulated 
reflectance> Recently thermal wave phase measurements 
have been applied to free-standing diamond films’” as well 
as to thin metal and diamond films on substrates.” 

The question that the present report deals with is how the 
dispersion relation (1) for thermal waves propagating along 
the surface should be modified for a thin film on a substrate. 

We consider the film to be “thermally thin”, i.e., thin 
compared to the characteristic thermal diffusion length 

h~Lf=(2Kf/u)1’2, (2) 

where h is the film thickness and K~ is the film thermal 
diffusivity. One can expect that a film much thinner than the 
thermal wavelength would have no substantial influence on 
the thermal wave propagation. It is not the case, however, 
when a film with high thermal conductivity on a poorly con- 
ducting substrate is involved. Indeed, micron-thick metal 
films on glass substrates appear to affect the heat propagation 
at frequencies of the order of kHz when Lf is close to 1 
mm.” Note that frequencies currently used in photothermal 
microscopy5’8’12 as well as in other harmonic thermal wave 
techniques4*6Y’0 do not usually exceed 1 MHz, providing thus 
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Lf>6 pm for a typical value of- 1 cm2/s, so that the model 
of a thermally thin film is quite reasonable for sub-micron 
metal or diamond films. Here we present a simple dispersion 
equation for this case and prove it with thermal wave phase 
measurements on thin gold films. 

II. RESULTS AND DISCUSSION 

We consider a substrate occupying a half-space 
z>O with a film of thickness h on it. Heat transport in the 
substrate is described by the heat diffusion equation 

dT 
x = K,V~T, 

where K, is the thermal diffusivity of the substrate. For the 
film being thermally thin, its temperature is assumed to be 
uniform over the film thickness and equal to the substrate 
temperature at z = 0. The heat transport equation for the film 
incorporating heat exchange with the substrate can then be 
written as 

dT dT 
CT ~=u~fv:T+&~, z=o, 

where CT is the specific heat per unit area of the film, 
a=pfcfh with pf and cf being the density and the specific 
heat in the film; Vi =d2/d~2+~2/~y2; X, is the substrate 
thermal conductivity. Thus, in the presence of a thin film a 
modified boundary condition (4) at z=O should be used in- 
stead of the ordinary free surface boundary condition 
dT/dz = 0. This result is also valid for a vertically inhomo- 
geneous film, with an effective value of of being used: 
KTff = ( l/C)Sp,C,K, dz, a’ j-p& dz. 

By using for a thermal wave an ansatz T=f(z) 
Xexp(iqx-iot) Eqs.(3)-(4) yield the simple result that 

T=To exp(-Pz)exp(iqx-iot), 

p=(q2-iwIKs)‘” (5) 

with q and w being related by 

iwlKf-q 2=(X,lhXf)(q2-iwlK,)‘n, (6) 

where Xf,s = pf,s CJ,~ tcf,S is the thermal conductivity of the 
film or substrate, respectively. This is our new dispersion 
equation that Eq. (1) should be replaced with in the presence 
of a thin film. In an explicit form it can be written as follows: 

5266 J. Appl. Phys. 78 (9), 1 November 1995 0 1995 American Institute of Physics 



frequency (Hz) 

FIG. I. Thermal wave dispersion curve (real part of the wave number vs 
frequency) for a l-pm-thick gold film on fused silica. Also shown is the 
dispersion of Re(/3), characterizing the penetration depth of the thermal 
wave into the substrate. Dashed lines show the dispersion curves for bulk 
gold (the lower curve) and silica (the upper one) according to Eq. (1). 

4io 
l----&-K&) (7) 

s 

where qO=X,lhhf. 
It should be noted that the validity of the dispersion 

equation obtained does not depend on whether the film ther- 
mal conductivity is greater or smaller than that of the sub- 
strate. However, Eq. (4) and hence Eqs. (6)-(7) are valid 
only for a thermally thin film conforming to Eq. (2). Under 
this condition, one can easily see that Eq. (7) yields just a 
trivial result q2=idKS, i.e., the thermal wave dispersion 
equation for the substrate material, unless X, is much larger 
than X,. That is, a thermally thin film substantially affects 
the thermal wave propagation only if being of much higher 
conductivity than the substrate. In this latter case there are 
two important characteristic frequencies: 

2 
Wmin=qoKs 7 W,,=q~K~/K,=(Kf/K,)2~~~. 

If w-=Somin we get again a dispersion relation (1) with 
K= K,~, i.e., no coating effect. In the opposite limiting case 
w*r&, we get Eq. (1) with K= K~, i.e., for the film unaf- 
fected by the substrate. In this case the thermal diffusion 
length in the substrate is much less than the film thickness 
and the conditions of heat propagation are close to those for 
a free-standing film. Thus, the region where the thermal 
wave behavior is not trivial spreads nearly from W,in to 
o,, . Note that this region can be wide enough as the ratio 
( w,,,,/o,,,~,,) is, e.g., for a metal film on a glass substrate, of 
the order of 104. 

Presented in Fig. 1 is the behavior of the real part of the 
wavenumber q against frequency f=w/2n- for a l-pm-thick 
gold film on fused silica obtained with Eq. (7). One can see 
the asymptotic behavior at low and high frequencies to be in 
agreement with the above consideration. In the intermediate 
region W,inQ w -=S WmaX the dispersion can be shown to be 
described by a simplified equation 

q2=ti- l)q0 
-\i 

e 
s 

so that the wavenumber is proportional to o”~ instead of the 
usual o”~ dependence. Another interesting feature is that the 
imaginary part of q is larger than the real part in this region, 
which implies that the thermal wave becomes “more dissi- 
pative” compared to the usual thermal wave of Eq. (1): a 
phase lag of 1 rad corresponds to attenuation by a factor of 
exp[tan( 3 r/4)] = 11 in contrast to the usual l/e attenuation. 
The frequency dependence of the real part of /I, characteriz- 
ing the thermal wave attenuation with depth, is also shown in 
Fig. 1. For w~~<w< o,, the thermal wave penetration 
depth into the substrate [Re(@]-’ becomes smaller than the 
wavelength while remaining still larger than the film thick- 
ness, so in this region we really deal with a “surface thermal 
wave.” 

The dispersion equation (6) can also be obtained from 
the more strict consideration of a film of finite thickness. In 
this approach the temperature field in the film is also de- 
scribed by a bulk heat diffusion equation (3) with K= K~ and 
the boundary conditions Tf = T,, XfdTf ldz = k,aT, ldz at 
the interface and dTf ldz = 0 at the free surface are applied. 
The temperature field in the thermal wave propagating along 
the surface is then given by 

T=To exp(iqx-iwt) 

[exp(-PfZ)+exp(Pjz-2Pfh)l, 
in the film, -h<z<O 

’ 2[l+(xsplxfpf)l-‘exp(-Pz), ’ 

I in the substrate, z>o 1 

with the dispersion relation 

Vf cosh( flfh) + - x p sinh(/3fh)=0. 
s 

For a thermally thin film pfhe 1, and taking cosh(#)z 1 
and sinh(#)=# we come again to Eq. (6). In the instance 
of Fig. 1 where the condition for the film to be thermally thin 
holds well over the frequency region shown, Eq. (9) yields 
values of Re(q) differing not more than by 0.05% from 
those obtained with Eq. (6). 

In application to thermoreflectivity measurements in 
photothermal microscopy, Eq. (7) describes the phase slope 
of the surface temperature at large distances from the heating 
laser beam. We confirmed this fact by numerical calculations 
of the surface temperature profiles with exact solutions for 
the three-dimensional harmonic heat flow in a layered 
structure,4”3 as well as by measurements carried out on thin 
gold films on glass substrates. As an example, Fig. 2 presents 
the phase profile of the surface temperature on a l-pm-thick 
gold film on BK7 glass, that was heated by an argon ion laser 
beam modulated with 680 Hz frequency and focused into a 
Gaussian spot with an l/e radius of 50 pm. The surface 
temperature was monitored via modulated reflectance with a 
probe beam of 5 pm waist radius. Also shown is a phase 
profile calculated numerically using formulae of Refs. 4 and 
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Thus, Eq. (7) can be used to obtain thin film thermal 
diffusivities from the asymptotic behavior of the phase of the 
surface temperature. In practice this means that the pump and 
probe beams should be separated by several beam radii. For 
example, in the case illustrated by Fig. 2, the phase slope 
obtained by Eq. (7) differs from the result of the exact theory 
less than by 0.5% at a distance x=100 pm (i.e., twice the 
beam radius) which would lead to an error of less than 1% in 
the film diffusivity.16 We also note that if the thermal prop- 
erties of the substrate are well defined, there is no need to 
measure the whole dispersion curve, as a measurement of the 

-100 0 100 200 Re(q) at any given frequency larger than f& would suffice. 
x (pm) 

III. CONCLUSION 
FIG. 2. Phase profile of the surface temperature for a I-m-thick electron 
beam evaporated gold fi lm on BK7 glass at 680 Hz. Circles: measured data, 
solid curve: numerical simulation, dashed lines: A  8=Re(q)Ax, with 4 
calculated with Eq. (7). 

13, with the best fit yielding a film thermal diffusivity value 
K,-=o.% cm2/s. Note that the literature value for gold14 is 
1.28 cm2/s and lower values were reported for thin gold 
films.15 For the above value of K~ Eq. (6) gives Re(q) =89 
cm-‘. One can see that a linear dependence 
A 8= Re(q) Ax well describes the asymptotic behavior of 
the phase outside the pump laser spot. 

Further measurements were carried out on a OS-pm- 
thick gold film with the modulation frequency varying from 
15 to 3000 Hz and with both pump and probe beam spots 
having radii 15 ,zm. The phase of the surface temperature 
was measured at distances 50 to 200 ,um from the pump 
beam and the real part of q was then determined from the 
slope of the 19(x) dependence. The measured dispersion 
curve presented in Fig. 3 follows nearly the wu4-law. The 
data can be seen to be well described by a dispersion curve 
of Eq. (7), with a film thermal diffusivity value K~ 

= 1.02+0.04 being obtained by the least-squares fit. 

1 10 100 lk 10k 100k 

frequency (Hz) 

FIG. 3. Measured (circles) and calculated for K~= 1 cm*/s (solid line) ther- 
mal wave dispersion curves for a 0.5~pm-thick electron beam evaporated 
gold fi lm on a BK7 glass substrate. Dashed lines show the asymptotic be- 
haviour of the calculated dispersion curve at low and high frequency limits. 
Dotted curves were calculated for ~f=O.5 c m %  (upper curve) and 2 
cm*/s (lower curve). 

We have thus obtained a simple dispersion equation for 
thermal wave propagating along a solid surface covered with 
a thermally thin layer. Its potential for photothermal micros- 
copy measurements is determined by the fact that at large 
distances from the heating laser spot the phase of the surface 
temperature is a linear function of distance with its slope 
being given by the dispersion equation. In comparison with 
the usage of the exact three-dimensional theory4V5V’3 to simu- 
late numerically the amplitude and phase profiles of the sur- 
face temperature” this approach would have an advantage in 
that it avoids complicated calculations and depends neither 
on the heating beam profile nor on variations in the surface 
reflectivity. 
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