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The three-dimensional equation of heat conduction is solved to obtain the time-dependent 
(harmonic) temperature field in an opaque, thermally anisotropic layer on a thermally thick and 
isotropic substrate when the system is heated by a modulated Gaussian laser beam. The influence of 
the anisotropy on the amplitude and phase response of the temperature variation as a function of the 
position on the surface and depth in the layer is studied. The limiting case of one-dimensional heat 
diffusion in highly anisotropic media is discussed. For one example the influence of thermal 
anisotropy on the frequency dependence of the surface temperature distribution is studied. 0 299.5 
American Institute of Physics. 

INTRODUCTION 

Thin-film systems have gained a widespread interest in 
many fields of science and engineering due to their unique 
physical properties and applicability in many technological 
areas. The development of manufacturing and preparation 
techniques has been followed by numerous investigations on 
the characterization of thin film systems with respect to 
many physical properties, e.g., morphology, structural, opti- 
cal, magnetic, and thermal parameters. There is a strong de- 
mand for thermal data of thin systems, especially for optical 
thin films’-’ and in the rapidly growing field of diamond thin 
tilm~.~-‘~ One of the most striking features of many thin 
films is their intrinsic anisotropy caused by several mecha- 
nisms during fiLm growth.‘4-‘6 The crystalline structure of 
the films leads to directional effects that introduce an aniso- 
tropic behavior for many physical parameters including the 
thermal conductivity.17 Anisotropic thermal conduction has 
been measured for various classes of materials including 
single crystals,18~‘9 composite materials,20 liquid crystals,213’2 
and superconducting materials23-25 by various techniques 
and also plays a role for nondestructive testing.26 Among 
various methods applied to this problem, photothermal meth- 
ods are most feasible in many cases where a noncontact tech- 
nique is required. The model calculations presented in the 
present article are devoted to the problem of thermal aniso- 
tropy in thin fi lms and its influence on the signal generation 
in photothermal experiments. They are an extension of re 
cently presented calculations” of harmonic heat flow in iso- 
tropic layered structures. Here, the three-dimensional equa- 
tion of heat conduction is solved for a system with an 
anisotropic layer on a thermally thick substrate heated by a 
Gaussian laser beam with sinusoidal intensity modulation. 
Light absorption is restricted to the layer. Extending previ- 
ously reported results based on a transfer function 
formalism,28 we present analytical solutions for the tempera- 
ture distribution in the layer, the substrate, and the adjacent 
atmosphere (e.g., air) above the surface of the film. The final 
expressions for the modulated temperature rise are repre- 
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sented by a two-dimensional Fourier integral that is evalu- 
ated with standard numerical routines. Numerical results in- 
dicate a strong influence of the nonisotropic diffusion on the 
temperature distribution. The calculations also provide a pos- 
sibility to check the validity of one-dimensional models for 
the flow of heat often used for the interpretation of photo- 
thermal measurements. 

ANALYTICAL MODEL 

The most straightforward way taking the thermal aniso- 
tropy of a material into account is to write the Cartesian 
components of the flux vector q as a linear function of the 
temperature gradientz9 at a given point, 

dT dT dT 
~~~ -+Kiz --+Ki3 - 

dx1 dx:! ax3 
. (1) 

The tensor nature of the conductivity (tensor elements K;~) 
leads to the important fact that the flow of heat is not neces- 
sarily perpendicular to the isothermals as it is in the case of 
isotropic media. If the anisotropic form of Fourier’s law for 
heat flow is inserted into the equation describing the law of 
energy conservation we obtain the equation of heat conduc- 
tion in anisotropic media, 

d2T d2T d2T d2T 
K11 -g+K22 -g+K33 -&~+(K12+K21) ~ 

1 2 3 Lxx* dx.2 

d2T d2T 
+tK13+‘%) ~+f(K23+%) ~- 

dT 
1 3 3x2 3x3 pc 77 

=-- Q. (2) 
Here c and p denote the specific heat and mass density, re- 
spectively. Q is the source term, i.e., the energy deposited 
per unit volume and unit time at a given point in the sample. 
Note that this anisotropic form of the heat conduction equa- 
tion does not allow a simple separation between diffusivity 
and conductivity and, hence, these quantities cannot be de- 
fined and measured independently as in the case of isotropic 
heat flow. The model system we consider is schematically 
shown in Fig. 1. It consists of a thermally anisotropic layer 
(region 1) with conductivity components K;~, an optical ab- 
sorption coefficient (Y, and reflectivity R on an isotropic bulk 
substrate (region 3). Multiple reflections of the laser 
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FIG. 1. Model system for an anisotropic layer (region 1) on a thermally 
thick substrate (region 2). Region 0 is the medium (e.g., air) above the 
sample. (x,y,e) defines the coordinate system. The y axis is directed per- 
pendicular to the paper plane. JC~ are the conductivity components of the 
thin-film sample oriented with an angle ~9 to the (x,y.z) system. 

beam at the interface are neglected. This is a proper presen- 
tation of the source term for an opaque film. Semitransparent 
films would generally require a more complicated descrip- 
tion of the internally reflected beams which is not appropri- 
ate for an analytical solution. However, the results presented 
here can also be used as a good approximation for a semi- 
transparent film on a transparent substrate if the reflexion at 
the interface is weak. The system is irradiated with a Gauss- 
ian laser beam (beam radius a and power P) and harmoni- 
cally modulated with the frequency CO. Light absorption in 
region 1 yields for the source term 

CUP 
&=2(1-R) I r -2[(x2+y2)/a2], -wpr 

rra- (3) 

Since we are only interested in harmonic heat 0ow the con- 
stant term in the source term and consequently the slow rise 
in average temperature before equilibrium is reached is ne- 
glected. Following the model introduced by Iravani and 
Nikoonahad28 the anisotropy is restricted to different conduc- 
tivities in two directions, i.e., we assume a diagonal conduc- 
tivity K; with two elements equal, yielding the same conduc- 
tivity in all directions of one plane and a different 
conductivity perpendicular to this plane, 

(4) 

The orientation of the principal axis of the conductivity with 
respect to the sample coordinates (x,y,z) is defined by intro- 
ducing the polar angle 0 between the y axis and the ~4, 
direction. The conductivity elements in the sample coordi- 
nate system (see Fig. 1) are found by a simple tensor trans- 
formation of the matrix elements in ECq. (4), 

Kll=K;* COS2 6+K;3 Sin2 6, 

K13=K31=(Kj3-K~I)COS 6 sin 8, 

(5) 
K33= K$3 COS2 8+ Kil  Sin’ 8, 

K22= K  &=K;l.  

Assuming that heat transfer is restricted to conduction, the 
solutions for the temperature are governed by three differen- 
tial equations, one for each region denoted by the respective 
subscript, 

d2T, d2T, d2T* d2T1 
K11 -9+K22 7+K33 ,,r+2K13 - 

JY dx dz 

dT1 
-P~CI dt= -Q, 

Here K~, po, co and K~, p2. c2 denote conductivity, density, 
and specific heat of the adjacent atmosphere and the backing 
substrate, respectively, while Kij, pl, and cr characterize the 
thin film. The method applied for solving Eqs. (6) follows 
the one proposed by Iravani and Nikoanahad28 using a two- 
dimensional Fourier transform defined as 

dy f(~,y)e~(~~+“~), (7) 

where u and u are transformation coordinates. Applying the 
Fournier transforms to Eqs. (6), we obtain for the tempera- 
tures in the three regions 

d5 dv &,v) 

WwzA=&- 

x e - YZ(Z4, -xk+ TIY)eiOt+CeC., 

where C.C. denotes the complex conjugate of the respective 
double integrals and
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FIG. 2. (a)-(c) Temperature pattern (500X500 pm? on the surface of an anisotropic bulk material as a function of the direction 0 of the anisotropy. 
Parameters: /cil = ~~~ = 250 W /mK, K& = 80 W /mK, p=2.25 X lo3 kg/m3, c= 7 14 J/kg K, wCln=500 Hz. Circles denote the l/e2 level of the Gaussian 
heating laser beam. (d) Depth dependence of radial temperature distribution for B= 135”. 

Yo= 
2 2 

6 + '5' +i iPoCoW~Ko)v i9) 
a= \T 
A=“333 v=-2icK,3, ~=-(~,~~~+~~2)7~fiW~,Cl). 

The three terms in the expression for the temperature in re- 
gion 1 represent the temperature rise due to direct heating, a 
thermal wave generated at the surface propagating into the 
material, and a wave reflected at the film/substrate interface. 
Since the substrate is assumed to be thermally thick, a  re- 
flected wave does not occur in the solution for region 2. The 
coefficients A, B, C, and D are determined by applying the 
boundary conditions at .the interface, i.e., continuity in heat 
flux and temperature to the expression from Eq. (8), 

To=T,, 
JTo dT1 

K0x=K31=+~33 2 for z=O, 

i?T, dT, dT2  
(10) 

T1 = T,, K31x+K33 x=K' x for z-1. 

We  obtain 
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A=- 

B= r-KoYo r+sA, 
KoYo- u  01) 

0 

C=A+B+r, ~=r~-“~+AeY11’~Be~lz’, 

where r, s, and u denote 

r=-$v-cd, s= -fv- yllx, u = -iv+ y&. 

Note that this result may be reduced to the solution for the 
isotropic case if we assume equal values for all elements of 
the conductivity tensor for the film. Applying the integral 
representation for the Bessel function3’ the expressions de- 
rived here reduce to those presented by Jackson et aL3r for 
an isotropic system. 

NUMERlCqL RESULTS 

The complex double integrals derived in the previous 
section are evaluated numerically yielding amplitude and 
phase values for the harmonic temperature variation. To 
demonstrate the effects of anisotropic heat flow we present 
two-dimensional plots of the amplitude as a function of ei- 
ther x,y surface coordinates revealing anisotropy in planes 
parallel to the surface or x,z bulk coordinates revealing an- 
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FIG. 3. Temperature distribution in the x/r. plane for a X-pm-thick Iayer with gold parameters on a glass substrate for two modulation frequencies. Pictures 
represent: (a), (d): isotropic case; (bj, (e): lateral conductivity reduced (1: 100); (c), (0: vertical conductivity reduced (1:lOO); T,, : temperature rise at the 
center of the heating beam. The inset in (f) shows the Gaussian profile of the heating laser beam where the dashed line denotes the l/e2 level. 

isotropy with respect to vertical and lateral heat flow, respec- 
tively. Galculations were performed for bulk samples and 
layer-on-substrate systems including heat loss to the ambient 
atmosphere (air). 

perature distribution below the surface. Actually, it can be 
shown that the lateral shift depends linearly on the z 
coordinate.33 

Figure 2 shows a calculation for a bulk model system. In 
Fig. 2(a) the conductivity in the surface plane is uniform 
(K,= fcll = K& so that the temperature distribution pre- 
serves the radial symmetry of the exciting Gaussian laser 
beam. The extension of the profile beyond the beam size is 
roughly determined by the lateral thermal length Lth 
= d-. An elliptical temperature distribution is found 
for a plane anisotropy corresponding to the condition B=90” 
as shown in Fig. 2(b). Here the conductivity along the y 
direction is three times larger than in the x direction leading 
to a preferred heat flow in this direction. Of course, this 
effect is only apparent if the thermal length along the y di- 
rection is larger than the radius of the incident laser beam. 

If the principal axes of the conductivity tensor are not 
aligned with the sample coordinate system, a steering effect 
is achieved [Fig. 2(c)]. Such an example with a net conduc- 
tivity along the positive x axis larger than in the negative 
direction yields a maximum of the temperature rise shifted 
along the positive x axis?’ From the figures presented here it 
is obvious that anisotropies yielding different components of 
the conductivity tensor in planes parallel to the surface may 
easily be determined by any photothermal technique capable 
of measuring surface temperature distributions provided the 
modulation frequency is chosen properly. In Fig. 2(d) we 
also investigate the shift of the maximum as a function of 
depth (z coordinate). For better clarity only one-dimensional 
line scans along the x and y axis are shown for z = 0 and 
z = 10 pm. As expected the maximum of the temperature is 
again shifted in positive x direction when probing the tem- 

As an example for a nonisotropic film-on-substrate 
structure we modeled a system consisting of a film with the 
thermal parameters of gold but introduced a lateral conduc- 
tivity that is MOO of the one in the vertical direction (311 
W-’ mK-‘) on a glass substrate. Numerical results for 1 and 
10 kHz modulation frequency are shown in Figs. 3(b) and 
3(e). For comparison the isotl’opic counterparts are included 
in Figs. 3(a) and 3(d). The lateral thermal length in the an- 
isotropic case does not allow for heat diffusion beyond the 
radius of the incident laser beam yielding an alignment of the 
isothermals in vertical direction at low frequencies [Fig. 
3(e)]. The higher temperature in the center of the incident 
beam is, therefore, preserved almost throughout the entire 
film thickness. Since the influence of anisotropy on the tem- 
perature profile is determined by the lateral thermal length it 
can be removed by increasing the modulation frequency 
[Fig. 3(b)]. It is interesting to recognize that at 10 k.Hz the 
peak temperature modulation is only 25% higher than for the 
isotropic case [Fig. 3(a)] while the ratio of peak temperatures 
is four at 1 kHz [Figs. 3(d) and 3(e)]. This result strikingly 
demonstrates the importance of lateral diffusion within the 
film for the shape of the thermal profile at low modulation 
frequencies. We also calculated a case where the vertical 
conductivity is l/100 of the lateral. Results are shown in 
Figs. 3(c) and 3(f). The thermal length in lateral direction 
now equals the one for the isotropic calculation, however, the 
heat is channeled in the lateral direction just beneath the 
surface leading to a broader temperature profile. Due to the 
poor diffusion in vertical direction the maximum surface 
temperature is by a factor of 8 higher than in the isotropic 
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FIG. 4. Frequency-dependent (a) amplitude and (bj phase for a model sys- 
tem using gold thermal parameters varying the conductivity in radial direc- 
tion. Temperature and phase are calculated at the sample surface in the 
center of the heating beam. 

case. Also note the fact that at-low frequencies the heat pen- 
etrates far into the ambient atmosphere [Fig. 3(f)]. 

As pointed out in our previous calculation27 the fre- 
quency dependence of the photothermal response is most 
helpful for thin-film conductivity measurements. Therefore, 
we investigated the frequency-dependent amplitude and 
phase of the surface temperature for different values of the 
lateral conductivity ranging from 0 to the value of the verti- 
cal conductivity. Such studies are a test for the validity of 
one-dimensional model calculations often used for photo- 
thermal wave calculations.34V35 The basic result for a bulk 
system with thermal properties of gold is shown in Fig. 4. 
The curves demonstrate that the saturation of the temperature 
amplitude observed at low frequencies arises from lateral 
diffusion and vanishes as the lateral thermal length becomes 
smaller than the beam radius [Fig. 4(a)]. From Fig. 4(b) it is 
immediately apparent that the influence of lateral heat flow 
on the phase extends to much higher frequencies as expected 
from the amplitude curves. Consequently, even for a large 
diameter beam radius of 100 pm a one-dimensional model 
for the heat transport is only justified for frequencies above 1 
MHz. For a smaller beam diameter this limit would appear at 
even higher frequencies. Since such considerations also ap- 
ply for layered systems we regard this result as a justification 
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for our efforts to calculate an elaborate, rigorous three- 
dimensional model for the description of photothermal 
waves in thin-film systems as presented in our previous 
article.” This appears to be especially important when deal- 
ing with techniques that are sensitive to the phase of the 
photothermal signal, and operate with high lateral resolution, 
such as photothermal microscopy.s6 In such measurements 
highly focused (-1 pm diameter) laser beams modulated 
with frequencies in the MHz regime are applied to detect 
subsurface thermal inhomogeneities and the photothermal 
phase is used for their localization in depth. From the above 
mentioned considerations it is evident that a precise depth 
measurement based on phase measurements strictly requires 
a three-dimensional thermal model for quantitative image in- 
terpretation. 

CONCLUSIONS 

We presented a complete three-dimensional analytical 
model describing harmonic heat flow in an absorbing, ther- 
mally anisotropic layer on a transparent substrate heated by a 
Gaussian laser beam. The strong influence of anisotropy on 
both the maximum temperature amplitude as well as the tem- 
perature distribution at the surface and in the depth of the 
material was demonstrated. Thermal anisotropy in planes 
parallel to the surface can easily be obtained by photothermai 
measurements of thermal profiles on the surface at low 
modulation frequencies. By calculating the frequency depen- 
dence of temperature amplitude and phase for systems with 
different anisotropies we also demonstrated that a three- 
dimensional model for the heat conduction is absolutely nec- 
essary for a valid description of the photothermal phase un- 
less operating at very high frequencies. 
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