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Probing electron induced defects in CaFy by photothermal displacement

M. Reichling, R. Bennewitz and E. Matthias
Fachbereich Physik, Freie Universitdt Berlin, Arnimallee 14, 14195 Berlin, Germany

Abstract: The surface displacement technique is used to measure the temperature and frequency
dependence of the periodic expansion of a CaF,-surface subject to a modulated focused beam of
lkeV electrons. Theoretical models are presented for a prediction of the observed phenomena
based on thermal transport and defect lifetime effects. The use of such investigations for the
study of thermal and non-thermal transport phenomena in alkaline-earth halides is discussed.

1. INTRODUCTION

The interaction of electrons with CaF, has been studied for years and many of the elemantary processes
following the primary excitonic excitation by the energetic electrons are now well understood. The for-
mation of self-trapped-excitons (STE) within picoseconds after excitation is either followed by a radiative
decay restoring the unperturbed lattice or the separation into an F-H defect center pair [1]. While the
temperature dependent lifetime of STEs is well documented, little is known about the decay of F-H pairs,
especially the probability for a separation into F- and H-center lattice defects. It has been demonstrated
that there exists another crucial parameter for the electron induced F- and H-center formation rate namely
the probability for a secondary hole excitation [2]. This process leads to a large separation of the defect
pair and enhances the formation of stable defect centers. The lifetime of these species is not well known,
however, one can antjcipate that it depends strongly on their diffusion properties since diffusion may
result in a recombination in the bulk or desorption at the surface.

The question of F- and H-center lifetime and diffusivity recently gained interest in connection with the
study of low energy electron induced surface processes [3]. In such experiments the defect production is
restricted fo a thin (typ. S00A) surface layer and the accumulation of densely packed F-centers leads to an
effective metallization at the surface. For a quantitative interpretation of the processes resulting in the for-
mation of metal colloids and subsequent surface metallization the knowledge of defect center formation
and diffusion rates is of great importance.

For the measurements of these properties we propose the application of the surface displacement
technique originally developed for the study of thermal transport properties [4]. It is a well known fact
that lattice defects in jonic crystals require more space than the regnlar lattice constituent [5,6]. The main
problem of such a procedure is the separation of thermal and non-thermal contributions to the
photothermal signal and to define those experimental conditions where this separation is most
pronounced. For carrier transport studies in semiconductors the modulation frequency has been shown to
be a useful parameter for pronouncing a specific process [7].

In the present paper we continue preliminary studies [8] of electron induced defect transport phenomena
in CaF, and present first suggestions for models yielding a quantitative understanding of such

experiments.
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2. BASIC OBSERVATIONS

To types of displacement experiments have been performed. Displacement signal amplitude and phase
have been monitored either as a function of the modulation frequency for a fixed temperature or
temperature dependent for fixed frequency. For frequency dependent scans in most cases a 1/f-behaviour
has been observed that is not useful for the study of lifetime or diffusion properties. For our electron beam
diameter of 1.8mm we had to work at low temperatures (<150K) and at low frequencies (<100Hz) to
obtain significant deviations from the 1/f-curve. A typical result for 4jLA of 2keV electrons impinging on
the CaF, (111)-surface of a single crystal cooled down to 135K is shown in Fig. 1.
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conductivity at 135K of k = 10,5 mm?s. This discrepancy indicates that a purely thermal model is not
appropriate for the interpretation of the experimental result.
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for the density n of defects with lifetime 1. I denotes a conversion factor for the creation of the defect
species contributing to the surface displacement. Defect diffusion has not been included in this model
what might be a plausible assumption in the low temperature region. Quantitative modelling however
needs more elaborate models including thermal and defect diffusion as well as lifetime contributions.
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Fig.4; Temperature dependence of important thermoelastic pa-
rameters of CaF, taken from the literature.

6. DISCUSSION

All results shown here and also the analysis of the displacement phase of such measurements indicate that
the displacement response of a CaF, surface subject to electron irradiation cannot be described by a model
based solely on thermal energy transport. Therefore, creation, relaxation and diffusion as well as the ex-
pansion of defects have to be considered for a model describing electron induced displacement measure-
ments in insulator crystals.

The problem might be complicated by a superposition of effects due to various species, however, it seems
to be a good assumption that in an equilibrium situation F- and H-center lifetime and diffusion play the
dominant role and contributions from STEs can be neglected. The diffusion range of an STE during its
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short lifetime is much too small to yield measureable effects. The number density of STEs during
continous irradiation of the sample with electrons of energy E, ..., can be estimated for our experimental

conditions:
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and second
j=2.5*1074 Afem?: current density R=4*10® em: penetration depth
Tere=1.7*10"0s:  STE lifetime E,,=12eV: band gap of CaF,

This means that under steady state conditions every 10-6th lattice site carries an STE. Even if we assume a
relative expansion of 20% of the unit cell with each STE, the integral expansion would be two orders of
magnitude below our detection limit. Also F- and H-centers could provide an expansion of the lattice but
we cannot predict the magnitude of this contribution: Neither the efficiency of the conversion of the STE
into a F-H-pair is known for CaF, vor their lifetime. However, conversion factors near unity in combi-
nation with lifetimes in the msec regime would yield a measurable displacement.

At the present stage a consistent, quantitative interpretation of the displacement results is not available.
An extensive set of sytematic studies over a wide range of temperature and frequency in conjunction with
extensive modelling has to be performed to gain more knowledge about this multi-dimensional problem.
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