
IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 23 (2012) 045401 (9pp) doi:10.1088/0957-0233/23/4/045401

Precise determination of force microscopy
cantilever stiffness from dimensions and
eigenfrequencies
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Abstract
We demonstrate the non-destructive measurement of the stiffness of single-beam,
monocrystalline silicon cantilevers with a trapezoidal cross-section and tips as used for atomic
force microscopy from the knowledge of cantilever dimensions, eigenfrequencies and material
parameters. This yields stiffness values with an uncertainty of ±25% as the result critically
depends on the thickness of the cantilever that is experimentally difficult to determine. The
uncertainty is reduced to ±7% when the measured fundamental eigenfrequency is included in
the calculation and a tip mass correction is applied. The tip mass correction can be determined
from the eigenfrequencies of the fundamental and first harmonic modes. Results are verified
by tip destructive measurements of the stiffness with a precision instrument recording a
force–bending curve yielding an uncertainty better than ±5%.
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1. Introduction

The stiffness of the cantilever used in atomic force microscopy
(AFM) is an important property for quantitative imaging.
The knowledge of the cantilever stiffness is, for instance,
important for the precise determination of adhesion forces
and free energy landscapes of biological objects investigated
by contact-mode or intermittent contact AFM [1]. When
operating the AFM in the non-contact mode (NC-AFM),
the stiffness and eigenfrequency of the cantilever are, for
instance, used to calculate the normalized frequency shift,
greatly facilitating the quantitative comparison of NC-AFM
images obtained with cantilevers having different properties
[2], and to measure force fields above a solid surface with
atomic precision [3].

There are numerous methods of calibrating the stiffness
of AFM cantilevers [4, 5] which can mainly be divided into

dimensional methods based on the calculation of the stiffness
from dimensions and material properties [6], dynamic methods
based on measuring resonance properties [7–9] and static
methods where the cantilever bending is measured as a function
of the applied force [10–13]. All of these methods have certain
requirements and limitations that are often not compatible with
the needs of a non-destructive determination of the stiffness
in a given AFM setup. The thermal method [7] requires a
spectrum analyser to record the thermally excited cantilever
motion and correction factors for the energy distribution over
the fundamental resonance and higher harmonics [14, 15].
Another method introduced by Sader et al [8] can easily be
applied in fluids of known density and viscosity like air but is
not applicable in the UHV. Methods adding particles of known
mass to the cantilever [9] or measuring the deflection while the
cantilever is pushed onto a calibrated reference cantilever [10]
are destructive or possibly contaminating and time consuming.
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Figure 1. SEM micrographs of cantilever D 5 taken to obtain its
precise dimensions. (a) Side view revealing the thickness t. (b) Top
view revealing the cantilever length l as well as the width w1 of the
tip side and the width w2 of the back side of the cantilever.

Here, we describe a method combining an analysis of
cantilever dimensions, often provided by the manufacturer,
with a dynamic analysis that can easily be performed in
most ultra-high vacuum compatible NC-AFM systems. Our
method is based on the method introduced by Cleveland
et al [9] but we apply a tip mass correction derived from
the ratio of the eigenfrequencies of the fundamental and
first harmonic mode of the cantilever oscillation [16]. We
demonstrate the importance of the tip mass correction and
verify stiffness values by a comparison to results from a
high-precision static method determining a force–bending
curve. We aim for high precision in determining the stiffness
and perform a rigorous analysis of measurement uncertainty.
While eliminating systematic errors, we determine the error
of measured quantities by a statistical analysis and determine
the error of the calculated final values by considering error
propagation [17].

2. Stiffness determined from cantilever dimensions

The stiffness of a cantilever as shown in figure 1 can be
calculated from its dimensions as

kdim = 3EI
l3

(1)

with E as Young’s modulus, I as the moment of inertia of the
cantilever beam and l as the length of the cantilever [6]. The
moment of inertia of a rectangular cantilever is given by

Irectangular = 1
12wt3 (2)

with width w and thickness t [6]. Most commercially available
single-beam cantilevers, however, have a trapezoidal cross-
section where w1 and w2 are the width of the tip side and
the back side of the cantilever, respectively, as illustrated
in the scanning electron microscopy (SEM) micrograph of
figure 1(b). It is useful to define a mean cantilever width as

w = (w1 + w2)/2 (3)

allowing the use of equation (2) also for cantilevers with
trapezoidal cross-sections. This approximation yields a slight
overestimation of kdim of the order of 2% as derived in
appendix A.

We investigate ten silicon cantilevers (Nanoworld AG,
Neuchâtel, Switzerland) having resonance frequencies in the
range of 50–70 kHz (type FM). The cantilever dimensions
for each cantilever are given in table 1 together with other
cantilever properties.

These dimensions have been determined by the
manufacturer using an optical microscope for determining the
length l and width w and a laser interferometer for determining
the thickness t. The cantilever length is measured from the
attachment point at the support chip to the AFM tip (see
figure 1) as this is the point where forces act on the cantilever.
For a cross-check of the data provided by the manufacturer
in the datasheet, we inspect selected cantilevers by SEM and
deduce dimensions from an analysis of micrographs as shown
in figure 1. The dimensions of cantilever D 5 as determined
by the SEM analysis are, for instance, l = 227 ± 12 µm,
w1 = 20.8 ± 1.1 µm, w2 = 35.8 ± 1.8 µm and t = 2.7 ±
0.2 µm. As for all other inspected cantilevers, they are in
good agreement with the values l = 229 µm, w = 30 µm and
t = 2.9 µm given in the data sheet. Principally, the SEM should
allow the determination of dimensions with higher precision
than the optical microscope. Practically, such measurements
are, however, hampered by difficulties in the proper alignment,
and specifically the precision of thickness measurements by
SEM analysis is limited by sample tilting. The strength of the
manufacturer’s dimensional analysis is the intrinsic precision
of the interferometric method for thickness determination and
the inspection of the cantilever still being bonded to the
wafer from which it is produced. The wafer provides a large
plane greatly facilitating perfect alignment so that even optical
microscopy yields lateral dimensions with a precision that can
hardly be exceeded by SEM analysis without excessive effort
in alignment.

In table 2, we compile stiffness values kdim calculated
according to equations (1) and (2) assuming cantilevers with
a rectangular cross-section w × t. As a material parameter, we
use Young’s modulus of ESi(110) = 169 GPa [19]. Results are
put into graphs in figure 2 (circles) together with the results
from other methods where values of kdim are plotted as solid
circles. The large error bars (typical uncertainty ±25%) mainly
stem from the dependence k ∝ t3 in combination with the large
uncertainty in the thickness measurement typically amounting
to ±8%.
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Table 1. Dimensions of the investigated cantilevers, namely length l, mean width w and thickness t as given by the manufacturer
(uncertainty !l = ±2.5 µm, !w = ±1.5 µm and !t = ±0.2 µm). Eigenfrequencies f0 and f1 (uncertainty ! f0 = ±0.1 Hz and
! f1 = ±0.5 Hz ) as measured in vacuum [18]. The ratio µ = mtip/mbeam and the eigenvalue α0 are calculated from the ratio f1/ f0 using
equations (5) and (8), respectively (calculated uncertainty !µ = 10 ppm and !α0 = 10 ppm).

Cantilever l (µm) w (µm) t (µm) f0 (Hz) f1 (Hz) µ α0

R 1 224.0 25.0 2.3 52 720.2 336 368.8 0.060 95 1.775 05
R 2 224.0 25.0 2.3 55 792.3 354 867.2 0.054 50 1.784 46
R 4 224.0 26.0 2.5 57 996.8 368 110.7 0.049 85 1.791 39
R 6 224.0 26.0 2.5 62 453.2 396 198.4 0.048 72 1.793 11
R 8 224.0 25.0 2.3 55 308.5 352 451.6 0.058 45 1.778 66
B 3 225.0 23.0 2.8 67 170.6 425 114.0 0.043 06 1.801 77
D 5 229.0 30.0 2.9 68 345.1 430 978.6 0.033 29 1.817 21
K 9 227.0 27.0 2.6 59 968.6 384 813.5 0.072 01 1.759 45
K 10 227.0 27.0 2.6 59 429.1 381 758.0 0.073 97 1.756 75
P 4 224.0 30.0 3.0 69 040.0 440 845.0 0.062 55 1.772 75

Table 2. Cantilever stiffness kdim obtained from a dimensional
analysis compared to values kdim, f0 obtained from length, width and
resonance frequency of the cantilever and ktip

dim, f0
including a

correction for the tip mass. Reference values kstat are obtained from
the precision measurement of force–bending curves.

kdim kdim, f0 ktip
dim, f0

kstat

Cantilever (N m−1) (N m−1) (N m−1) (N m−1)

R 1 1.1 ± 0.4 0.67 ± 0.07 0.93 ± 0.09 1.01 ± 0.06
R 2 1.1 ± 0.4 0.79 ± 0.08 1.07 ± 0.10 1.23 ± 0.06
R 4 1.5 ± 0.5 0.93 ± 0.09 1.22 ± 0.12 1.70 ± 0.09
R 6 1.5 ± 0.5 1.16 ± 0.11 1.51 ± 0.14 1.67 ± 0.08
R 8 1.1 ± 0.4 0.77 ± 0.08 1.06 ± 0.10 1.17 ± 0.06
B 3 1.9 ± 0.6 1.29 ± 0.13 1.64 ± 0.17 1.63 ± 0.08
D 5 2.6 ± 0.8 1.87 ± 0.16 2.25 ± 0.19 2.50 ± 0.13
K 9 1.7 ± 0.6 1.11 ± 0.10 1.62 ± 0.15 1.68 ± 0.09
K 10 1.7 ± 0.6 1.08 ± 0.10 1.59 ± 0.15 1.75 ± 0.09
P 4 3.0 ± 0.9 1.80 ± 0.16 2.52 ± 0.22 3.05 ± 0.16

Figure 2. Comparison of cantilever stiffness determined by different
methods. The error bars for kdim, f0 do not include the systematic
error introduced by neglecting the tip mass.

3. Stiffness determined from force–bending curves

To verify the results from the dimensional analysis,
all cantilevers are investigated in a precision nano-force

Figure 3. Schematic representation of the setup for the static
stiffness measurement. The expanded view in the upper left shows
the region of the contact between the edge and the tip. The support
chip of the cantilever is mounted on the stamp of the balance with
the tip pointing upwards.

measurement setup based on a static measurement of the
cantilever bending as a function of the applied force as
determined by a balance. This method allows a direct
determination of the stiffness kstat from the force–bending
curve; however, as it involves pressing the tip against an edge,
the method is tip destructive.

The respective setup was originally developed for the
calibration of reference cantilevers and micro-manipulation
equipment [11] and is schematically depicted in figure 3. The
cantilever is mounted with its tip side up on the stamp of an
ultra-precision balance having a force resolution of 2 nN (type
SC2, Sartorius AG, Göttingen, Germany). A force F is applied
to the tip by an edge mounted on a positioning unit allowing
for coarse positioning in three dimensions and fine positioning
in the vertical direction. For taking a force–bending curve, the
fine-positioning device (PIFOC P 721 with digital controller
E 750, Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe,
Germany) moves the edge along the z coordinate (vertical) in
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Figure 4. Force–bending curve measured for cantilever R 1 with the
static reference method.

contact with the tip over a range of typically 2.5 µm with a
positioning accuracy of 1 nm. The maximum force exerted
on the tip is typically 4 µN to ensure the validity of Hooke’s
law over the entire range of bending. By ramping the edge
position stepwise up and down in an automated process, a
force–bending curve as shown in figure 4 is obtained. This
curve exhibits a region of approach (F = 0), the snap-to-
contact and a region with a linear dependence of the force as
a function of the z position. The stiffness of the cantilever is
determined from the fit of a straight line to the force–bending
curve in its linear region:

kstat = !F
!z

. (4)

The measurement is repeated 100 times. The average slope
is calculated separately for ramping up and down where
the hysteresis does not yield results deviating more than
1% from each other. The standard deviation of such a
series of measurements is smaller than ±0.01 N m−1 for
all cantilevers investigated here. The high reproducibility is
obtained by placing the measurement setup in a well-controlled
environment of stabilized ambient pressure, temperature and
humidity as described in appendix B. Considering the accuracy
of the force measurement and systematic errors, e.g. resulting
from indenting the tip, the uncertainty limit of the static
reference measurement is determined to be below 5% in a
conservative estimate.

The stiffness kstat is determined for all cantilevers
investigated by the dimensional method and results are
compiled in table 2 and shown in figure 2 (triangles). As a
notable result, we mention that the deviation of kdim from
kstat is generally small (maximum 15%) despite the large
uncertainty of kdim. This points to the principal capability of
the dimensional method to yield accurate stiffness data.

4. Stiffness determined from dimensions and
eigenfrequencies

As an alternative method to determine the stiffness avoiding
the shortcomings of the simple dimensional method, it has

Figure 5. Measured eigenfrequencies f exp
0 compared to calculated

eigenfrequencies f theo
0 based on equation (5) and eigenfrequencies

f theo
0,tip based on equation (5) including tip mass corrected values α0

determined individually for each cantilever.

been suggested [9] to combine cantilever dimensions with the
cantilever eigenfrequency. The eigenfrequency fn of the nth
mode of a rectangular cantilever is given by [20, 6]

fn = ωn

2π
= α2

nt
2π l2

√
E

12ρ
, n = 0, 1, 2, . . . , (5)

with ρ as the density of the cantilever material and αn as
eigenvalues of the Euler–Bernoulli partial differential equation
[21] solved to describe the cantilever oscillation3. Combining
equations (1), (2) and (5) allows one to determine the stiffness
while eliminating the critical thickness measurement [4]:

kdim, fn = 2π3wl3 f 3
n

α6
n

√
123ρ3

E
. (6)

In the following, this method is used under the assumption
that the investigated cantilever has a rectangular cross-section
of w × t. The more rigorous analysis assuming a trapezoidal
cross-section introduced in appendix A yields a difference
between the calculations for the rectangular and trapezoidal
cross-sections of about 1%. To obtain the eigenvalues αn, the
following equation [14] is solved numerically:

cos αn cosh αn + 1 = 0. (7)

For the fundamental mode, the solution is α0 = 1.8751.
In figure 5, we compare the eigenfrequencies f theo

0 of the
investigated cantilevers (squares) calculated according to
equation (5) with α0 = 1.8751 and a density of ρSi =
2331 kg m−3 [23] with measured values f exp

0 (circles) that
can be determined with a precision of ±0.1 Hz [18]. While the
calculated uncertainty in the eigenfrequency is about ±8%,
we find calculated frequencies typically 15% higher than
measured ones. This systematic error stems from neglecting
the tip mass that is a significant contribution to the oscillating

3 To be consistent with [6] and our former work [18, 22], we denote the
fundamental resonance frequency as f0 and, therefore, label the solutions αn
of equation (7) as n = 0, 1, 2, . . . , while other authors [14, 16, 20] associate
the fundamental mode with n = 1.
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(a)

(b)

Figure 6. SEM micrographs of details in the tip region of cantilever
D 5. (a) Top view; (b) side view. The meaning of the height and
volume quantities shown is explained in the text.

mass for cantilevers and tips of dimensions as investigated
here. The error in the calculated eigenfrequency propagates to
the stiffness calculation kdim, f0 as is evident from table 2 and
figure 2 where the squares are systematically outside the error
bars below the stiffness values of the other methods.

To correct for the mass of the tip, we apply an
extended cantilever oscillation model [20, 21] and substitute
equation (7) by

cos αn + 1/ cosh αn + µαn(tanh αn cos αn − sin αn) = 0, (8)

where

µ = mtip/mbeam = mtip/(ρwtl) (9)

is the ratio between the tip mass mtip and the mass of the
cantilever beam. To obtain an estimate for the tip mass, we
again employ SEM and try to determine the tip volume from
an analysis of SEM micrographs exhibiting details of the tip
in the side and top views as shown in figure 6 for the example
of cantilever D 5. As the tip has not an ideal pyramidal shape
but a more irregularly shaped base, we determine upper and
lower limits of the tip volume denoted as V 1

t and V 2
t using the

rhombic base areas marked in figure 6(a) and the tip height ht

obtained from figure 6(b).
Apart from the mass of the AFM tip itself, other volume

parts at the cantilever end differing from the idealized
cantilever (dashed lines in figure 6(a)) contribute to the

mass correction. In the following, we subsume all of these
contributions as the tip mass:

mtip = ρ

(
V 1

t + V 2
t

2
+ VD + V 1

δ − V 2
δ

)
. (10)

A significant contribution is the volume V! of the triangular
part of the cantilever beyond the tip position. Furthermore, we
consider the additional mass caused by the widening of the
cantilever

(
V 1

δ

)
shortly before its end and the reduction

(
V 2

δ

)

due to the triangular shape of the end section, which often
cancel each other. Using equations (9) and (10), we obtain
µ = 0.035 ± 0.009 as a mean value defined by the upper and
lower limits V 1

t + V! and V 2
t + V!. Solving equation (8) for

this tip mass ratio yields α0 = 1.815 ± 0.015 for cantilever
D 5, which is a deviation of 3.2% from the value of α0 =
1.8751 determined for a cantilever without a tip.

Seeking a procedure yielding µ without the time-
consuming analysis of SEM micrographs, we follow a
procedure introduced by Allen et al who demonstrated that
µ can be determined from the ratio f1/ f0 between the first and
second eigenfrequencies of the cantilever [16] by using the
relation

f1/ f0 = α2
1

/
α2

0 (11)

that is evident from equation (5). To accomplish this, a system
of equation (11) and equation (8) for n = 0 and n = 1 is solved
to determine the three unknowns µ, α0 and α1 with a more
detailed description given in appendix C. For cantilever D 5, we
obtain µ = 0.033 29±0.000 01 and α0 = 1.817 21±0.000 01,
which is well in agreement with the value determined from the
SEM analysis. The high accuracy in the measurement of the
eigenfrequencies yields an extremely low uncertainty of the
calculated mass ratio µ and the eigenvalue α0. In table 1,
the values of µ and α0 obtained from the ratio f1/ f0

are given for all investigated cantilevers. The tip mass
ratios differ by a factor of more than 2 from each other,
motivating an individual measurement for each cantilever
instead of using a standard value for all cantilevers. Such
calculations are performed within minutes with the help of the
algorithm provided in the supplementary materials available
at stacks.iop.org/MST/23/045401. To illustrate the effect of
the tip mass correction on results from equation (5), we
determine eigenfrequencies f theo

0,tip with tip mass correction and
include them in figure 5 (diamonds). They agree well with
experimental values (circles).

The spring constants ktip
dim, f0

calculated using equation (6)
with tip mass corrections according to equations (8) and (9)
are included in table 2 and shown in figure 2 (diamonds)
for comparison. Their uncertainty is ±7% and we generally
find a rather perfect agreement of these values with kstat

values (triangles). Although this method does not require
a measurement of the cantilever thickness, a nonuniform
thickness along the cantilever beam can significantly change
its dynamic behaviour [16], which may be the reason for the
results of cantilever R 4 being less consistent than the others.
The dimensions of cantilevers R 4 and R 6 as well as the
calculated values of µ are almost identical; however, their
measured eigenfrequencies differ significantly. As also kstat

values for R 4 and R 6 are almost identical, it is clear that
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the difference in kdim,f0 is an artefact and points to a limitation
of the precision of ktip

dim,f0
under certain circumstances. The

average deviation between ktip
dim, f0

and kstat is 9% if we do not
consider the outlier result of cantilever R 4. This is a dramatic
improvement in uncertainty compared to the values kdim,f0 .

5. Discussion

We introduce a non-destructive method for the precise
determination of the stiffness of silicon cantilever beams
with a trapezoidal cross-section that solely requires a
dimensional analysis of the cantilever and the measurement
of eigenfrequencies. The obtained precision of typically 7% is
close to what is possible at best according to the available
literature [12, 13] and our own experience. Even with a
most sophisticated setup and great effort in optimization
as demonstrated for the static method to determine k,
an uncertainty of ±5% is the best to be claimed. The
dimensional/dynamic method introduced here is best suited for
the in situ characterization of cantilevers for ultra-high vacuum
NC-AFM as such systems allow for a precise determination of
eigenfrequencies. A limitation may, however, be the detection
bandwidth of the NC-AFM system that needs to be 2 MHz,
for instance, for 300 kHz cantilevers frequently used in
NC-AFM measurements. If reliable plan view dimensions
are available from the cantilever manufacturer, the entire
characterization can be accomplished within 15 min when
using automated control and data analysis software to measure
f0 and f1, calculate α0 and finally calculate kdim, f0 according to
equation (6).

The uncertainty in the material constants used is not a
limitation for the precision of stiffness determination when
cantilevers made of monocrystalline silicon are used. Accurate
values for ρ and E are available in the literature [19, 23–25]
and their variation with temperature and the degree of doping
is small. The temperature dependence of Young’s modulus is
approximately −60 ppm K−1 in the room temperature region,
which can be neglected in our uncertainty considerations [25].
The cantilevers investigated here are made of n+ silicon having
a specific resistance of 0.01–0.02 ' cm. A typical doping
is about 1019 P-atoms cm−3. The corresponding Young’s
modulus has been found to be Edoped

110 = 167.4 GPa instead
of E110 = 169.0 GPa for undoped silicon [24]. The decrease
of E by 1% would yield kdim values decreased by −1% and
kdim, f0 values increased by +1.3%. This demonstrates that also
the influence of doping on the stiffness determination is small.

A limitation of the method are systematic errors
introduced by faults and inhomogeneities in the cantilever
thickness caused by disturbances during etching [16], and such
errors are hard to quantify. Dimensional inhomogeneity is most
probably the cause of the inconsistency found for cantilever
R 4. Having examined some ten cantilevers, we find that there
are one or two specimens where such problems arise.

While we demonstrate the method for monocrystalline
silicon cantilevers commonly used in ultra-high vacuum
NC-AFM, it can in principle be used also for cantilevers
with a different shape and cantilevers made from different
materials. The feasibility of our approach critically depends

on the availability of valid physical models for the description
of the oscillation of a cantilever with a specific geometry
and precise values for the material constants of the respective
material it is made of. We anticipate that our approach is least
applicable to cantilevers with a coating as the determination of
precise parameters for modelling the coating is most difficult
in practice. A surprising result of our study is, however, that
the very simple approach of calculating the stiffness solely
from the cantilever dimensions according to equations (1), (2)
and (3) is a good alternative in cases where utmost precision
is not needed. This procedure yields a considerably larger
uncertainty; however, in our measurements, the deviation from
the reference values never exceeds 15%.
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“Unterstützung kleiner und mittlerer Unternehmen bei der
Umsetzung von Innovationen in den Bereichen Messen,
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Appendix A. Corrections for cantilevers with a
trapezoidal cross-section

The moment of inertia of a cantilever having a trapezoidal
cross-section is given by [26]

Itrapezoidal =
t3

(
w2

1 + 4w1w2 + w2
2

)

36(w1 + w2)
. (A.1)

Inserting equation (A.1) into equation (1) yields ktrap
dim while

the approach presented in section 2 yields krect
dim from inserting

equation (2) into equation (1). The deviation between results
calculated according to the two approaches is

krect
dim

ktrap
dim

= 6w2

w2
1 + 4w1w2 + w2

2

= 1.02 (A.2)

using the dimensions of cantilever D 5 obtained by SEM
(l = 227 µm, w1 = 20.8 µm, w2 = 35.8 µm, t = 2.7 µm
and w = 28.3 µm). This indicates that the usage of the mean
width yields a slight overestimation of the cantilever stiffness
of typically 2%, which is small compared to the general
uncertainty of this method.

The method presented in section 4 can also be modified
for cantilevers with trapezoidal cross-sections

ktrap
dim, fn

= 36
√

2 f 3
n π3l3(w1 + w2)

2

α6
n

√
w2

1 + 4w1w2 + w2
2

√
ρ3

E
(A.3)

having equation (5) combined with equations (1) and (A.1)
instead of equation (2).

When comparing the exact expression for the trapezoidal
cantilever to the simplified expression for the rectangular
cantilevers, we obtain in this case

krect
dim, fn

ktrap
dim, fn

=
√

3
18

√
w2

1 + 4w1w2 + w2
2

w
= 0.988 (A.4)
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3

2

5

4

1

Figure B1. View on the environmentally controlled chamber
housing the stiffness measurement system with removed front cover.
The main components are (1) coarse and fine positioning units,
(2) interaction zone with edge acting on the tip of the cantilever
mounted on a balance stamp, (3) ultra-precision scale, (4) pressure
gauge with control unit and (5) water container for temperature
stabilization.

using the dimensions of cantilever D 5. This results in a slight
underestimate (1.2%) of the stiffness of trapezoidal cantilevers
when the approximation for rectangular cantilevers is
used.

Appendix B. Environmental stabilization of the
static stiffness measurement setup

To reproducibly provide identical environmental conditions
for measurements of kstat, the setup for the static stiffness
measurement is placed in a sealed chamber shown in the
photograph of figure B1 with the front cover opened. The
pressure inside the chamber as well as the humidity is
controlled actively by homemade regulation systems (pressure
gauge Model 370, Setra Systems Inc., Boxborough, MA,
USA; humidity sensor HygroClip-S, ROTRONIC Messgeräte
GmbH, Ettlingen, Germany) while the interior temperature is
passively stabilized by the large heat capacity of the aluminium
case (about 230 kg) and by the presence of 40 L of water.
The environmental parameters are set to values of typically
1030 hPa for the pressure and 40.00% for the humidity
while the temperature is room temperature that is externally
stabilized to 22 ◦C. This allows for a stabilization of the
pressure with a precision of ±1 Pa and the relative humidity
to be stabilized within ±0.02% rH as demonstrated in figure
B2 while the typical drift of temperature is smaller than 10
mK h−1. To achieve these conditions, the setup has to be
equilibrated for about 5 h before a series of measurements is
taken that typically takes 15 h for one cantilever. While the
stabilization of temperature and humidity mainly reduces the
instrumental drift, the stabilization of the ambient pressure
reduces the noise in the force measurement from a standard
deviation of 25 nN without stabilization to a standard
deviation of 5 nN with active stabilization as demonstrated

(a)

(b)

Figure B2. Temporal development of pressure (a) and humidity (b)
in the environmentally controlled chamber for activated regulation
systems. The peak in (a) is due to the onset of pressure regulation.

(a)

(b)

Figure B3. Demonstration of the reduction of the noise floor in the
force measurement yielded by the stabilization of the ambient
pressure. (a) Deviation of force as measured by the precision
balance from the mean value without stabilization. (b) The same
deviation measured with active stabilization.

in figure B3. These measures of stabilization guarantee that
stiffness results are not even slightly affected by environmental
conditions.
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(a)

(b)

Figure C1. Solutions of equation (8) for a cantilever with a finite tip
mass mtip = µρwtl. (a) Tip mass ratio µ as a function of the
frequency ratio f1/ f0. (b) Eigenvalue α0 as a function of the
frequency ratio f1/ f0. Shaded areas denote the regions for a positive
tip mass correction.

Appendix C. Detailed discussion of tip mass
correction

Equation (8) does not allow a straightforward calculation of
the tip mass ratio µ as it contains the eigenvalue αn as a
second unknown variable. However, by establishing a relation
between the eigenfrequencies f0, f1 and the eigenvalues α0,
α1 for the fundamental and the first harmonic mode of the
cantilever via equation (11), µ and α0 can be determined as a
function of the ratio of eigenfrequencies f1/ f0. The respective
results are shown in figure C1. Although α1 is not shown
here, it can be obtained from the ratio f1/ f0 and α0 related by
equation (11). The function is valid for positive and negative
tip mass corrections yielding positive or negative values
for µ. Here, we can restrict the discussion to a positive
mass ratio µ located in the upper branch of figure C1(a)
while the corresponding α0 is found on the lower branch of
figure C1(b). Although this is the general case, a positive tip
mass is not always obvious. As a special case, for instance,
picket-shaped cantilevers can be modelled as rectangular

cantilevers with a negative tip mass [27]. To decide whether
the tip mass is positive or negative, we use the following
expression, derived from equation (5), to obtain a rough
estimate of α0 from the cantilever dimensions and its
fundamental mode eigenfrequency:

α0 = l

√
2π f0

t

√
12ρ

E
. (C.1)

The uncertainty using this method for the stiffness
determination is over 30% because kdim, f0 ∝ α−6

0 . However,
the results of relation C.1 are precise enough to decide whether
the tip mass is positive or negative, as for a significant tip
mass the position in the upper or lower half of the graph
of figure C1(b) is obvious. For cantilever D 5, we obtain
α0 = 1.78 ± 0.07 from equation (C.1), which is obviously
lower than 1.8751 and, therefore, indicates that the tip mass is
positive.
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