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Modeling nanoscale charge measurements
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The quantitative measurement of charges at the nanoscale yields important insights into fundamental physical,
chemical, or biological processes. In principle, charges can be probed by the sharp tip of a dynamic atomic force
microscope, however, quantitative measurements are still a challenge as a large number of parameters and effects
contribute to the measured signal. Here, we introduce the fundamental framework for charge force microscopy
(CFM) and investigate charges located in, on, or above the surface of a dielectric substrate supported by a
metal electrode. We present a comprehensive analysis of CFM signal generation and, in particular, unravel the
dependency of the CFM signal on the probe oscillation amplitude, on system parameters such as the substrate
dielectric constant or the tip geometry, and on the vertical and lateral position of charges. Most importantly, we
untangle the influence from nearby charges when quantifying the magnitude of a central charge of interest in
presence of many surrounding charges. We find that charge quantification from regular imaging bears many
ambiguities, while mapping the CFM signal perpendicular to the sample surface allows to untangle many
signal contributions. Thus, by accounting for measurement parameters and nonlocal influences, quantitative
measurements are possible with CFM.

DOI: 10.1103/PhysRevB.108.085420

I. INTRODUCTION

Measuring and controlling the charge state of nanoscale
objects is paramount in a large number of research fields in-
cluding catalysis, organic and molecular electronics, quantum
sensors, or energy storage [1–3]. A change in the charge state
of a nano-object can well be detected by dynamic techniques
of measuring forces between a fine tip and the object of
interest with a sensitivity down to single electrons [4–8] and
atomic-scale resolution has been achieved [9,10]. In contrast,
the quantification of the static charge magnitude accumulated
in a nano-object is still most challenging [11]. In addition to
the long-range character of the electrostatic force, the elec-
tric potential distribution governing the tip-surface interaction
critically depends on the nanoscale size and shape of the tip
that can hardly be produced or characterized with the desired
precision.

Here, we address fundamental aspects for an experimental
quantification of charges below, on, or above the surface of
an electrically insulating substrate. Charge measurements are
implemented using the technology of frequency-modulated
(FM) closed-loop (CL) Kelvin probe force microscopy
(KPFM), a nanoscale imaging technique that is rooted in the
measurement of the work function difference between tip and
sample for metal and semiconductor surfaces [12–14]. The
KPFM measurement signal is generally referred to as the con-
tact potential difference (CPD) [15] and the spatial resolution
power is reflected by introducing the concept of both a local
work function [16] as well as a local contact potential differ-
ence [15]. The central measurement parameter in KPFM is the
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bias voltage Vbias applied between the electrically conducting
tip and the conducting sample.

In this work, we investigate charges near a dielectric sup-
port and Vbias refers to the voltage applied between the tip
and a metallic counter electrode. The primary outcome of a
charge measurement experiment is the force-minimizing bias
voltage V min

bias that is the response in the FM-CL force mea-
surement. For our analysis, we build on previous work where
a formalism was outlined allowing a simple representation
of V min

bias in terms of the charges qi and the weighted average
of the second derivatives of the tip-surface electric potential
�void at the charge positions �ri as well as the weighted average
of the second derivative of the void capacitance Cvoid along
the tip-sampling path [17]. Together, these averages provide
a weight function Wq(�ri ) [18], which determines the contribu-
tion of the respective charge to the V min

bias voltage signal. For a
valid interpretation of measurement data, the contact potential
difference between tip and sample support VCPD that is part
of the measured signal V min

bias has to be taken into account.
Measuring V min

bias is further on referred to as the method of
charge force microscopy (CFM).

Here, we investigate by extensive modeling how a static
charge magnitude can be measured by monitoring the CFM
voltage V min

bias when approaching the tip to the surface in the
vicinity of the charge. In particular, we use three different
geometric models for the tip and investigate V min

bias for differ-
ent oscillation amplitudes, different dielectric properties of
the substrate, different charge positions, and different charge
distributions around a central charge of interest. We find that
the CFM voltage acquired as a function of the tip-sample
distance zts is key to charge quantification, while commonly
used imaging bears many ambiguities.

The paper is organized as follows: In Sec. II we review the
physical model, introduce three tip geometries that are used
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metal electrode

dielectric support

FIG. 1. Geometry of a tip in proximity of a dielectric support
fixed on a metallic counter electrode. Point charges qi (red spheres)
are located between tip and metal electrode. The void (charge-free)
tip-sample capacitor is physically described by the electrostatic po-
tential �void(�r). An external voltage Vbias is applied between tip
and metal counter electrode, while a voltage −VCPD is generated
upon electrical contact between the two metals. The vector �rts =
[xts, yts, zts] describes the momentary tip position with zts being the
tip-sample distance.

for the simulations, and discuss the electrostatic quantities
relevant for Wq(�ri ). The influence of the probe oscillation
amplitude A, the impact of the dielectric constant εs of the
substrate, and effects of the tip geometry on the charge
measurement are analysed in Sec. III. In Sec. IV, we inves-
tigate the influence of the lateral and vertical positions of a
single point charge on the distance-dependent CFM signal.
Section V addresses charge quantification by introducing a
methodology to retrieve the charge of a central pointlike ob-
ject in the vicinity of secondary charges from V min

bias data. We
conclude in Sec. VI with a summary of major results and
propositions for a successful implementation of CFM mea-
surements.

II. ELECTROSTATIC MODEL AND CFM FUNDAMENTALS

A model representation of the tip-sample geometry is
shown in Figs. 1 and 2. The system is described in the
sample coordinate system �r = (x, y, z) where the tip is po-
sitioned at �rts = [xts, yts, zts]. Following previously outlined
definitions [19], the z axis is perpendicular to the substrate
surface, its origin z = 0 is at the surface, and zts is the closest

tip-sample distance during one tip oscillation cycle. The tip is
brought into close proximity to the surface of a thick dielectric
support with relative permittivity εs that is fixed on a metal
plate acting as the counter electrode with respect to the tip.
Charges qi placed at positions �ri in, on, or above the dielectric
support represent point charges or charged nanoscale objects
that are subject of investigation. The model works under the
assumption that the tip is an ideal metal free of excess charge.
The surface of the tip is assumed to be smooth as well as
bare of atomic structure and the tip can be described by a
macroscopic model [20]. A variable voltage Vbias is applied
between tip and counter electrode, while the voltage −VCPD

appears upon establishing electrical contact between tip and
counter electrode.

The electrostatic force Fel acting on the probing tip is
the central quantity for charge quantification as it is funda-
mental for determining the voltage V min

bias . This force can be
calculated from the electrostatic energy of the full physical
setup, whereby the tip-sample system, the point charges, as
well as the external bias supply have to be taken into ac-
count. For the tip-sample system, the electrostatic energy can
be calculated from solving the electrostatic problem for the
given tip and sample geometry including the point charges
and the dielectric support. Additionally, the work performed
by the external bias supply has to be taken into account in
the energy calculation. A solution of the more general elec-
trostatic problem, namely, a system containing an arbitrary
number of metal objects and point charges with an external
battery, has been given before [21]. For our purpose, this
analysis has been reduced to the case of two metals, one
representing the tip and the second the counter electrode, as
well as N point charges [17]. This allows to write the total
electrostatic energy Uel as a sum of four contributions [22],
namely,

Uel = UC + Uq-C + Uq-q + Uim. (1)

The first term UC describes the capacitive interaction between
tip and metal electrode with an interjacent dielectric medium.
This energy is independent of the point charges, but estab-
lishes the quadratical dependence of the interaction force on
Vbias. The quantity governing this contribution is the void
capacitance Cvoid(�rts ), where �rts is the momentary tip position.
By void we denote all quantities of the charge-free system.

S SCLSC

FIG. 2. Cross sections of the three model tips and system geometries: sphere (S), half-sphere and cone (SC), as well as half-sphere and
cone with lever (SCL). The sphere is parametrized by the radius rsphere, the cone by the cone height hcone and half opening angle �cone, and the
lever by the radius rlever and the thickness hlever. The tip-sample distance zts (marked by the dotted line) is defined as the distance between the
surface of the dielectric support with relative permittivity εs and the point of the tip closest to the surface.
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(a) (b)

(c) (d)

FIG. 3. (a) Capacitance Cvoid as well as (b) first, (c) second, and (d) cap-averaged second derivative of the capacitance for tip models S, SC,
and SCL. Data in (a)–(c) are plotted with respect to the tip-sample distance zts, while data in (d) are plotted with respect to the tip oscillation
center position zc [19] for oscillation amplitudes A in the range of 2 to 18 nm. Tip model parameters listed in Table I and εs = 24 are used in
the calculation. For geometry S, results calculated by the analytical [25] (S1) and numerical [24] (S2) codes are depicted by black dashed and
straight red lines, respectively. Results for the SC and SCL models are depicted in green and blue, respectively.

The system is modeled by two metals representing the tip and
the counter electrode with the potential difference V between
these two metals. Further analysis shows that the capacitive
term is an important experimental parameter but not directly
relevant for charge measurements. Instead, the second energy
contribution Uq-C is central for charge quantification as this
term describes the energy required to bring the point charges
qi into the capacitor at positions �ri. In particular, the energy
for each point charge i can be expressed by a product between
the point-charge magnitude qi and the electrostatic potential
of the point-charge free capacitor �void(�rts, �ri ) for a given
tip position �rts and at the position of the charge �ri. For the
ease of calculation, the electrostatic potential is normalized
by the potential difference V , resulting in the normalized elec-
trostatic potential �̂void = �void/V . The Coulomb interaction
between the point charges is described by the third term Uq-q.
Descriptively, this is the energy required to introduce each
point charge into the field of the other point charges. The
fourth term Uim describes the energy contribution of all image
charges at the metal surfaces that are generated by the point
charges.

Using Eq. (1), the electrostatic force Fel is calculated from
the negative derivative of the total energy Uel with respect
to the tip-sample distance zts. The restriction of the deriva-
tive to the coordinate zts is justified by the constraint of the
probe solely oscillating along zts without any other degree

of freedom. The electrostatic force consists of four terms,
namely [22],

Fel(zts,V ) = 1

2

∂Cvoid

∂zts
V 2 −

N∑
i=1

qi
∂�̂void(�ri)

∂zts
V − ∂Uq-q

∂zts

− 1

2

N∑
i=1

qi
∂�im(�ri )

∂zts
. (2)

The first term follows from the capacitive contribution to the
electrostatic force and is always attractive as ∂Cvoid

∂zts
< 0 as

shown in Fig. 3(b). This term enables the measurement of
the voltage VCPD in KPFM experiments [14]. The second term
is the key contribution to CFM measurements as it describes
the force acting between the charges and the metal objects.
The third term vanishes ( ∂Uq-q

∂zts
= 0) as electrostatic forces

and counterforces compensate each other in an ensemble of
charges held at fixed positions. The fourth term is caused
by charge redistribution on the metal surfaces, commonly
referred to as the image charge. The related potential �im is
independent of the potential difference V and, therefore, does
not contribute to V min

bias as the force minimizing bias voltage is
derived from the derivation with respect to V.

The basic principle of CFM is the variation of Vbias to
find the point of minimum attractive force at V min

bias where
the repulsive charge-dependent force best counteracts the
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TABLE I. Parameters for the tip models S, SC, and SCL utilized
for all calculations unless otherwise noted.

rsphere �cone hcone rlever hlever

Model ( nm) ( deg) ( µm) ( µm) ( µm)

S 30.0
SC 30.0 23.3 12.5
SCL 30.0 23.3 12.5 34.6 4.0

attractive capacitive force under conditions of a dynamic
measurement. For a measurement with frequency modulation
and closed-loop force minimization, the total potential differ-
ence V between tip and sample is represented as

V = Vbias − VCPD + Vel cos (2π felt ) (3)

with the contact potential difference VCPD, the bias voltage
Vbias, and a bias modulation with amplitude Vel and frequency
fel. The negative sign for VCPD is used to follow the common
convention in the KPFM literature [15]. As a result of the
bias modulation, the electrostatic force measured by the tip
is a modulated signal with spectral components at fel and 2 fel,
namely [22],

Fel = Fel,a + Fel,b cos(2π felt ) + Fel,c cos(2π2 felt ). (4)

Terms Fel,a and Fel,c are given in Ref. [22]. The term

Fel,b = Vel

(
∂Cvoid

∂zts
(Vbias − VCPD) −

N∑
i=1

qi
∂�̂void(�ri)

∂zts

)
(5)

is relevant for CFM as this component contains the full infor-
mation on the charge distribution. It can be shown [22] that
the dynamic measurement with FM detection yields a signal
proportional to the cycle-averaged force gradient〈

∂Fel,b

∂zts

〉
∩

= Vel

(〈
∂2Cvoid

∂z2
ts

〉
∩

(Vbias − VCPD)

−
N∑

i=1

qi

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩

)
, (6)

whereby 〈. . . 〉∩ denotes the cap-weighted average func-
tion [23]

〈 f 〉∩(zc) = 2

πA2

∫ A

−A
f (zc + z)

√
A2 − z2 dz (7)

with the tip oscillation center position zc and the oscillation
amplitude A as introduced in Ref. [19]. The CFM signal
voltage V min

bias directly follows from setting Eq. (6) to be equal

(a) (b)

(d)(c)

FIG. 4. (a) Normalized electrostatic potential �̂void as well as (b) first, (c) second, and (d) cap-averaged second derivative of the normalized
electrostatic potential evaluated at position �r0 = [0, 0, 0] for tip models S, SC, and SCL. Data in (a)–(c) are plotted with respect to the tip-sample
distance zts, while data in (d) are plotted with respect to the tip oscillation center position zc [19] for oscillation amplitudes A in the range of 2 to
18 nm. Tip-model parameters listed in Table I and εs = 24 are used in the calculation. For geometry S, results calculated by the analytical [25]
(S1) and numerical [24] (S2) codes are depicted by black dashed and straight red lines, respectively. Results for the SC and SCL models are
depicted in green and blue, respectively.
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FIG. 5. Weight function Wq as a function of the tip oscillation
center position zc [19] calculated at the position �r0 = [0, 0, 0] for
models S, SC, and SCL as well as for amplitudes A in the range from
2 to 18 nm. Increasing amplitudes are represented by successively
tinted colors (colors with increased lightness) as indicated by the
color bars.

to zero. Technically, this is usually realized by a feedback
loop adjusting Vbias to the point of vanishing signal 〈 ∂Fel,b

∂zts
〉∩

with respect to Vbias; this signal can be measured from the
fel component in the frequency-shift signal � f . Narrow-band
and phase-sensitive detection of this component yields a high
signal-to-noise ratio for measuring V min

bias as the small voltage
modulation amplitude Vel effectively produces a differentia-

tion with respect to Vbias. The CFM signal then reads as [17]

V min
bias = VCPD +

N∑
i=0

qi

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩〈

∂2Cvoid

∂z2
ts

〉
∩

. (8)

This equation can be written in a compact form by introducing
the weight function for charges Wq(�ri) [18] evaluated at the
charge position �ri:

V min
bias = VCPD +

N∑
i=0

qiWq(�ri ) with Wq(�ri) =

〈
∂2�̂void(�ri )

∂z2
ts

〉
∩〈

∂2Cvoid

∂z2
ts

〉
∩

.

(9)

Two electrostatic quantities contribute to the weight function
Wq, namely, the normalized electrostatic potential �̂void eval-
uated at charge positions �ri and the capacitance Cvoid, both for
the given tip position �rts. To evaluate these quantities, the tip-
sample system has to be defined in all details, namely, the tip
geometry (formally described by a set of parameters {ptip}),
the tip position �rts = [xts, yts, zts], the dielectric constant εs

of the dielectric support, and the tip oscillation amplitude A
via the cap-average 〈. . . 〉∩. The vertical tip position of the
averaged quantities is parametrized by either the tip oscilla-
tion center position zc or the position of the lower turning
point during the oscillation cycle zmin

ts = zc − A [19]. Taking

(a) (b)

(c)

(b)

(c)

FIG. 6. V min
bias voltage calculated for models S, SC, and SCL as a function of (a) zmin

ts for amplitudes A in the range from 2 to 18 nm as well as
(b), (c) as a function of the oscillation amplitude A at fixed minimum tip-sample distances of (b) 3 nm and (c) 30 nm. Equation (8) is evaluated
at �r0 = [0, 0, 0] for a single point charge q = −e (with the elementary charge e > 0) located at this position. Tip-model parameters listed in
Table I, εs = 24, and VCPD = 1 V are used in the calculation. Increasing amplitudes are represented by successively tinted colors [see color
bars in (a)]. For clarity, only the V min

bias curves for the smallest and largest amplitudes are depicted in (a).
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(a) (b)

(I)

(II)

(I)

(II)

FIG. 7. Dependency of V min
bias (zmin

ts ) on (a) the sample permittivity εs with rsphere = 30 nm and on (b) the sphere radius rsphere with εs = 24,
both for the SCL model. An oscillation amplitude A = 5 nm, parameters from Table I, εs = 24, and VCPD = 1 V are used. One negative charge
q = −e is placed at �r0 = [0, 0, 0]. The successive tint of the line colors represents (a) the different permittivity values (εs = 6.8, 24, and 100) or
(b) the different sphere radii (rsphere = 10, 30, and 50 nm). Insets show the corresponding cap-averaged second derivatives of (I) the capacitance
and (II) the normalized electrostatic potential.

account of all parameters, we find

〈Cvoid〉∩ = 〈Cvoid〉∩(xts, yts, zc, εs, {ptip}, A), (10)

〈�̂void〉∩ = 〈�̂void〉∩(�ri, xts, yts, zc, εs, {ptip}, A), (11)

Wq(�ri ) = Wq(�ri, xts, yts, zc, εs, {ptip}, A). (12)

For homogeneous, atomically flat surfaces, the vector �rts in
Eqs. (10)–(12) could be substituted by the scalar coordinate
zts. However, for the general case of a structured surface, the
lateral tip position has to be taken into account. Depending
on the context, different parameters for the electrostatic quan-
tities will be relevant in the following sections. To highlight
the respective relevant dependency for the different cases,
we refrain in the following from explicitly listing the full
parameter list for the quantities in Eqs. (10)–(12), but give
the relevant ones instead.

For the evaluation of the electrostatic model for the void
system, we consider three model tip geometries as sketched in
Fig. 2: a tip consisting of a sphere with radius rsphere (denoted
by S), a half-sphere with radius rsphere attached to a cone with
height hcone and half opening angle �cone (denoted by SC),
and a half-sphere and a cone, as in the SC model, attached to
a lever with area Alever and thickness hlever (denoted by SCL).
The model tips have different sets of parameters {ptip}, but
all bear rotational symmetry with respect to the z axis. To

maintain this symmetry, the lever in geometry SCL is modeled
by a disk of radius rlever with an area Alever = πr2

lever chosen to
be the same as the one of a typical rectangular cantilever. As
the sensitivity to the cantilever size is neglectable when using
FM detection [24], we do not consider the different oscilla-
tion amplitudes of the elements along the one-side clamped
cantilever beam [20], but assume that the beam oscillates as
one element. We apply two algorithms to numerically evaluate
�̂void and Cvoid, namely, an implementation of the analytical
model originally calculated by Smythe [25] for geometry S
as well as the CAPSOL code [24] for geometries S, SC, and
SCL. To check the consistency of our methods, we perform
calculations using both the Smythe (denoted by S1) [25] and
CAPSOL (denoted by S2) [24] methods for the sphere model
and find perfect agreement. Note that the Smythe method
assumes a dielectric half-space, while we choose 1 mm thick-
ness of the dielectric support for calculations based on the
CAPSOL code. Assuming a finite dimension for the dielectric
support has negligible effect on the results as the length scale
of the relevant interactions is orders of magnitudes smaller
than 1 mm.

Clearly, geometry SCL is expected to resemble the ex-
perimental situation closest and, therefore, is expected to
yield the best results. However, the comparative evaluation
of geometries S, SC, and SCL yields insights into the rele-
vance of the tip parameter set for the evaluation of V min

bias . We
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tip sphere

(II)(I)

surface
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FIG. 8. V min
bias as a function of the tip-sample distance zmin

ts for different vertical charge positions zq of a single point charge q = −e (with
the elementary charge e > 0) located at �r = [0, 0, zq] with the tip positioned at xts = yts = 0. Vertical charge positions zq are chosen in the
range from −45 to 2 nm. The SCL model, an oscillation amplitude of A = 5 nm, tip-model parameters listed in Table I, εs = 24, as well as
VCPD = 1 V are used in the simulation. Inset (I) represents V min

bias as a function of the vertical charge position zq at constant minimum tip height
zmin

ts = 3 nm, while inset (II) is a sketch of the tip geometry and the charge positions.

start the exploration by performing the intermediate steps of
calculating quantities 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) and 〈 ∂2�̂void

∂z2
ts

〉∩(zc) for the
different models and by investigating contributions of the dif-
ferent tip elements to these quantities. The dimensions listed
in Table I are adapted from commercially available cantilevers
with metal coating that are commonly employed for KPFM
experiments and are, unless otherwise noted, used for the
following numerical evaluations. The results for the capaci-
tance and electrostatic potential including their gradients and
respective weighted averages along the tip oscillation path
are presented in Figs. 3 and 4, respectively, for εs = 24. The
averages are plotted as a function of the tip oscillation center
position zc [19]. The colors correspond to the tip geometries:
S in red, SC in green, and SCL in blue, while the different tint
of these colors indicate the respective amplitude as depicted
by the color bars in Figs. 3(d) and 4(d).

Naturally, the capacitance Cvoid(zts ) as a function of the
tip-sample distance zts is found to be a monotonically de-
creasing function and capacitance values of the sphere model
tip (S) are several orders of magnitude smaller than those of
the SC and SCL model tips [see Fig. 3(a)]. The focus here
is calculating the weight functions Wq(�ri ), where rather the
curvature than the absolute value of the capacitance is rele-
vant. With each step of differentiation with respect to zts, the
curves for the different models come closer to each other [see
Figs. 3(b) and 3(c)]. The differences are further reduced when
calculating 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) as shown in Fig. 3(d) for a series of
oscillation amplitudes.

The normalized electrostatic potential �̂void(�ri ), evaluated
at �ri = �r0 = [0, 0, 0] for the tip at �rts = [0, 0, zts], shown
in Fig. 4 as a function of the tip-sample distance zts ex-
hibits a decaying behavior. Here, potential values are of the
same order of magnitude for the different tip models, yet,
we find qualitative differences. While �̂void(zts ) for model
S quickly decays towards zero over the shown range, the
decay of the other models is much slower. However, dif-
ferences between the models vanish upon differentiation.
Notably, the cap-averaged second derivatives 〈 ∂2�̂void

∂z2
ts

〉∩(zc)
shown in Fig. 4(d) are almost identical for the different tip
geometries.

To explore the situation relevant for a CFM measurement,
we now assume that a charge is placed at the position �ri =
�r0 and the tip oscillates along the z-axis symetrically to zc.
The weight function Wq at the position �r0 as a function of zc

is calculated for models S, SC, and SCL and for amplitudes
A varied in the range from 2 to 18 nm with results shown in
Fig. 5. A strong dependency of Wq on the oscillation amplitude
and on the tip model is apparent and further dependencies will
be investigated in the following sections. These dependencies
will directly translate into the CFM signal V min

bias via Eq. (9)
and it is, therefore, evident that V min

bias values determined with
different oscillation amplitudes or under otherwise different
conditions cannot be compared to each other.

In summary, when calculating properties along the surface
normal through the tip center, the cap-averaged capacitance
gradient exhibits a more critical dependence on the tip model
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than the cap-averaged electrostatic potential gradient. As
modeling a realistic tip at the nanoscale is a most difficult
endeavor, for the practical exploitation of the CFM method,
it would be most desirable to determine 〈 ∂2Cvoid

∂z2
ts

〉∩(zc) directly
from the experiment rather from a model. Furthermore, the
cap-averaged second derivatives of the electrostatic capaci-
tance [Fig. 3(d)] and the normalized potential [Fig. 4(d)] both
exhibit a strong dependency on the oscillation amplitude A,
translating into a strong amplitude dependency of the CFM
signal V min

bias .

III. PARAMETERS DETERMINING THE CFM VOLTAGE

Now, we investigate the dependency of V min
bias on experimen-

tal and material parameters for the case of a negative charge
q = −e (with e > 0) positioned at �r0 = [0, 0, 0]. In particular,
the CFM voltage V min

bias is calculated as a function of the tip
position along the z axis with �rts = [0, 0, zts] for εs = 24 and
VCPD = 1 V unless otherwise noted.

A. Oscillation amplitude

We start by investigating the dependency of V min
bias on the os-

cillation amplitude A that is varied in the range of 2 to 18 nm.
V min

bias is plotted in Fig. 6 as a function of (a) the minimum
tip-sample distance zmin

ts for different oscillation amplitudes
and (b), (c) as a function of the oscillation amplitude A at
fixed minimum tip-sample distances zmin

ts = 3 nm and zmin
ts =

30 nm, respectively. The position zmin
ts = zc − A represents the

minimum tip-sample distance during the oscillation cycle and
can be chosen to be zero as Wq always attains a finite value at
zmin

ts = 0.
The CFM voltage exhibits the largest deviation from VCPD

at very small tip-sample distances [see Fig. 6(b)], while
the deviation for the sphere S is largest at large tip-sample
distances [see Fig. 6(c)]. We attribute this behavior to the
simplicity of the sphere tip model creating an electric field that
is qualitatively different from the more realistic tip models SC
and SCL. As the central result, we find a scaling of V min

bias with
the oscillation amplitude A over a large range of zmin

ts . Con-
sequently, the oscillation amplitude A is a critical parameter
for CFM measurements and it is important to experimentally
determine this parameter for CFM measurements [26–28]. All
further analysis will be focused on the SCL tip model.

B. Substrate dielectric constant

Results in Fig. 7(a) highlight the influence of the substrate
dielectric constant εs on V min

bias . While keeping all other param-
eters constant, we vary the relative permittivity to εs = 6.8,
24, and 100 to cover the range from insulating to almost
metallic samples. As expected, V min

bias values are close to VCPD

for large εs. This corresponds to the situation of a Kelvin
probe measurement on an electrical conductor, where a single
charge present at the surface has only a minute effect on the
work function measurement. The deviation of V min

bias from VCPD

is increasing with decreasing εs and we yield the plausible
result that most sensitive charge measurements are possible on
a strongly insulating substrate. This behavior is qualitatively
the same for the other tip geometries as shown in Appendix A

tip sphere charge position

(a)

(b)

FIG. 9. Effect of the lateral charge position on V min
bias .

(a) Model geometry including charges at radial positions Ri
q =√

(xq,i )2 + (yq,i )2 for zq = 0 and the tip at position �rts = [0, 0, zmin
ts ].

(b) V min
bias data as a function of the tip-sample distance zmin

ts for single
point charges q = −e at selected radial positions Ri

q. The SCL
tip model, an oscillation amplitude of A = 5 nm, parameters from
Table I, εs = 24, and VCPD = 1 V are used for the simulation. The
inset in (b) represents V min

bias as a function of the radial displacement
Rq at zmin

ts = 0.

[Fig. 13(a)] and can be traced to an increased sensitivity of
the cap-averaged second capacitance gradient to εs [see inset
(I) in Fig. 7(a)]. As the actual εs of the substrate is often
not well known, this finding points to the importance of an
experimental determination of 〈 ∂2Cvoid

∂z2
ts

〉∩(zts ).

C. Sphere radius

The impact of the sphere radius rsphere on V min
bias is shown

in Fig. 7(b). When exploring V min
bias within realistic ranges

of {ptip}, we find that the sphere radius is the most critical
parameter of the tip geometry, while a change of cone and
lever dimensions within the same order of magnitude has a
significantly smaller effect (data not shown). Larger devia-
tions of V min

bias from VCPD are found for smaller sphere radii.
Furthermore, a rapid decay of V min

bias with increasing zmin
ts is

found for large tip radii rsphere, yet the absolute signal is
smaller. This behavior is attributed to strong lateral averaging
of a large tip [29] and the differences highlight that the tip
radius is a critical parameter for charge quantification.

IV. CFM VOLTAGE AS A FUNCTION
OF THE CHARGE POSITION

Aside from the system parameters, the magnitude of V min
bias

has a clear dependency on the charge position relative to the
lateral position (xts, yts ) and the lower turning point zmin

ts of the
tip oscillation. In particular, the following analysis will high-
light the nonlocal character of the CFM detection principle.

085420-8



MODELING NANOSCALE CHARGE MEASUREMENTS PHYSICAL REVIEW B 108, 085420 (2023)

(a) (b) (c) (d)

(a)

(b)

(a) (b) (c) (d)

(a)

(b)

(c)

(d)

PCPM

surrounding 
charges

FIG. 10. Results of the optimization routine for a charge distribution with three point charges q1, q2, and q3 at different distances to the
central charge of interest q0. (a) Point-charge position map (PCPM) illustrating the charge positions. (b) Artificially generated measurement
data V min

bias,meas as a function of the tip-sample distance zmin
ts . The curves are generated for oscillation amplitudes A = 5 nm (dark blue), 10 nm

(lighter blue), 15 nm (dark green), and 20 nm (light green) using εs = 24, VCPD = 1 V, and parameters from Table I. The V min
bias curves fitted to

these data by the optimization algorithm are depicted by gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD

as a function of the amplitude A. (d) Model and resulting values for the surrounding charges qi (i = 1, 2, 3) and their sum for the different
amplitudes A indicated by the same colors of the points as in (b).

A. Vertical charge position

First, the CFM signal V min
bias is investigated with respect to

the tip-sample distance zmin
ts for a single point charge located

at different central vertical positions with results presented in
Fig. 8. Vertical charge positions zq in the range from −45 to
2 nm for the SCL model (see inset II in Fig. 8 for a sketch
of the geometry) and an oscillation amplitude of A = 5 nm
are chosen. The vertical position range includes the dielectric
boundary and extends along the negative direction up to a
vertical distance of more than the tip radius. In all cases, the
V min

bias (zmin
ts ) curves exhibit the largest deviation from VCPD at

small tip-sample distances and approach VCPD for large zmin
ts .

The CFM voltage as a function of the charge position zq but
at a fixed tip height of zmin

ts = 3 nm is presented in inset (I)
of Fig. 8. The slope with respect to zq differs on either side
of the dielectric boundary: Due to the high electric field at
the tip apex, a large slope of V min

bias (zmin
ts ) is present in the gap

between tip and dielectric. The polarization of the dielectric
medium surrounding the point charge at zq < 0 leads to a

slow decay towards VCPD for large zq. A similar behavior is
found for the S and SC tip models (see Appendix A, Fig. 14).
This example particularly shows that charges buried inside the
dielectric substrate, such as charged defects or vacancy sites,
contribute to the V min

bias voltage and, therefore, can compromise
the CFM measurement of charges of interest.

B. Lateral charge position

Second, the CFM signal V min
bias (zmin

ts ) is evaluated for dif-
ferent lateral point charge positions at the substrate surface
(zq = 0) with results shown in Fig. 9. Since the SCL tip
model bears rotational symmetry along the z axis, any lateral
charge position (xq, yq) can be mapped to one radial coordi-

nate Rq =
√

x2
q + y2

q measured from the lateral tip position.
Consequently, with a rotational symmetric tip, it is not possi-
ble to distinguish between charges present at different lateral
positions of identical radial distance Rq. Instead, the V min

bias volt-
age of several charges located at the same radial distance Rq
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(a)

(b)

(c)

(d)

PCPM

surrounding 
charges

(a) (b) (c) (d)

FIG. 11. Results of the optimization routine for a complex charge distribution with 13 point charges qi surrounding a central charge of
interest q0. (a) Point-charge position map (PCPM) illustrating the charge positions. (b) V min

bias,meas data as a function of the tip-sample distance
zmin

ts . The curves are generated for oscillation amplitudes A = 5 nm (dark blue), 10 nm (lighter blue), 15 nm (dark green), and 20 nm (light
green) using εs = 24, VCPD = 1 V, and parameters from Table I. V min

bias curves fitted to these data by the optimization algorithm are depicted by
gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A. (d) Model and resulting
values for the surrounding charges qi (i = 1, . . . , 13) for the different amplitudes A indicated by the same colors of the points as in (b).

are equal to the V min
bias voltage corresponding to the sum of their

charge magnitudes. We expect that the rotational symmetry
is a reasonable approximation for experiments as AFM tips
are usually fabricated with the aim to being rather symmetric.
Figure 9(a) visualizes the tip geometry and the model charge
positions on the radial axis with charges positioned within
(i = 1 . . . 6) and beyond (i = 7 . . . 10) the xy-projected tip
sphere. V min

bias (zmin
ts ) curves calculated for exemplary individual

charges are shown in Fig. 9(b) whereby the charges are named
by their radial positions Ri

q.
All curves exhibit their maximum deviation from VCPD at

or close to zmin
ts = 0. The CFM voltage at zmin

ts = 0 is closer
to VCPD for large radial charge positions. This is in agreement
with a reduced sensitivity to a point charge located far away
from the lateral tip position as is further highlighted by the
inset in Fig. 9(b), where V min

bias (zmin
ts = 0) is plotted as a function

of the radial charge position Rq.
At larger tip-sample distances, V min

bias voltages approach
VCPD, however, V min

bias (zmin
ts ) does not converge against VCPD

within the investigated tip-sample distance regime. Instead,
the V min

bias voltages differ, depending on the lateral charge

position, by several mV from VCPD even at zmin
ts = 80 nm.

Moreover, not all V min
bias (zmin

ts ) curves are strictly monotonic
with respect to zmin

ts , but may exhibit an intermediate ex-
tremum [see, for example, V min

bias (zmin
ts ) data for R5

q in Fig. 9(b)].
The positions of these extrema shift towards larger zmin

ts with
larger radial charge position Rq what can be explained by
the form of the weight function for charges Wq, specifically
by the transition in the electrostatic quantities between the
sphere-dominated and the cone-influenced regimes. An inter-
mediate extremum, and a qualitative agreement with all other
observations discussed in this section, is also observed for
the other tip geometries S and SC as shown in Appendix A,
Fig. 15.

As expected, the strongest contribution of a point charge
to V min

bias is found for positions close to the tip apex, while
the influence diminishes for positions further away. How-
ever, even charges located at radial distances of Rq � 100 nm
contribute to the V min

bias signal. As is apparent for R7
q or R9

q
in Fig. 9(b), the contribution is rather constant with respect
to the tip-sample distance zmin

ts and effectively appears as an
offset to V min

bias . Consequently, if multiple charges are present
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FIG. 12. Introduction of effective charges qeff
i for the charge distribution in Fig. 11. (a) Point-charge position map (PCPM) showing the

full charge distribution with point charges qi (black points, identical positions, and magnitudes as in Fig. 11) used for V min
bias,meas(z

min
ts ) data

generation as well as the effective charges qeff
i (red circles) used as parameters for the fitting routine. The blue segments represent the different

ranges in which the effective charges qeff
i are placed. (b) V min

bias,meas data as a function of the minimum tip-sample distance zmin
ts . The simulation

is performed for oscillation amplitudes A = 5 nm (dark blue), 10 nm (lighter blue), 15 nm (dark green), and 20 nm (light green) as well as for
εs = 24, VCPD = 1 V, and parameters from Table I. The corresponding V min

bias curves resulting from the optimization algorithm are depicted by
gray dashed lines. (c) Model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A. (d) Model and resulting
values for the surrounding effective charges qeff

i (i = 1, 2, 3, 4) and their sum for the different amplitudes A indicated by the same colors of the
points as in (b).

in the system, it is likely that these have to be considered
when determining the magnitude of a point charge centered
underneath the tip and that their contribution can hardly be
distinguished from VCPD. These observations underline the
necessity of performing charge quantification by distance-
dependent measurements on a central charge while taking the
surrounding charges into account.

V. CHARGE QUANTIFICATION

Based on the previous understanding of the CFM voltage,
we introduce in this section an approach to determine the
charge state of a central charge q0 positioned at �r0 = [0, 0, 0].
In particular, we demonstrate that the central charge q0 can be
retrieved with high accuracy even if a number of surrounding
point charges qi are present, a situation frequently given in
experiments.

A. Optimization algorithm

The central approach for charge determination lies in the
fitting of V min

bias (zmin
ts ) data with the charge magnitudes and the

contact potential difference as free fit parameters. Here, we
demonstrate the robustness of this approach by numerical
simulations. Along these lines, we implement an optimization
algorithm for fitting Eq. (8) to V min

bias,meas(z
min
ts ) data of a simu-

lated measurement of a charge distribution with N + 1 point
charges qi at positions �ri. The MATLAB® function fminsearch
is used to iteratively reduce the root-mean-square (rms)
difference between the measured V min

bias,meas(z
min
ts ) and calcu-

lated V min
bias (zmin

ts ) data with qi (i = 0 . . . N ) and VCPD as fit
parameters. We consider charge distributions of different com-
plexity and generate corresponding artificial V min

bias,meas(z
min
ts )

data. These data shall represent experimental situations where
a nano-object like a metal cluster is charged by some or some
10 elementary charges. For testing the optimization routine,
we utilize tip model S evaluated by the Smythe formulas [25].
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Tip model S is chosen here to reduce computational time, yet
other reasonable tip models are expected to work as well.

First, we introduce a charge distribution consisting of
a central charge q0 at �r0 = [0, 0, 0] and three surrounding
charges q1, q2, and q3 placed at radial positions R1

q = 20 nm,
R2

q = 80 nm, and R3
q = 160 nm, all at zq = 0. The geometry of

this distribution including the tip sphere is shown in top view
in Fig. 10(a) what we further on denote as the point-charge
position map (PCPM). Charge magnitudes qi are randomly
chosen in the interval between −30e and −60e (with the
elementary charge e > 0). We do not see any fundamental
limitation of the charge magnitude in further simulations with
different charge magnitudes (see Appendix B, Fig. 16 for
one example with smaller charge magnitudes). The distance-
dependent data are calculated for the given charge distribution
using amplitude values A = 5, 10, 15, and 20 nm parame-
ters listed in Table I, εs = 24, and VCPD = 1 V. The resulting
V min

bias,meas(z
min
ts ) curves are depicted in Fig. 10(b). Note that for a

simulation with all qi having the same sign, the nonmonotonic
behavior in the CFM data is characteristic to the S model tip
and does not represent a physical property of the distribution
of charges under investigation.

Second, we test the optimization routine by recovering the
“unknown” charge magnitudes q0, q1, q2, and q3 as well as
VCPD by fitting V min

bias (zmin
ts ) to the data generated in the first

step. Starting values are chosen for VCPD as zero and for
qi as one negative elementary charge. The optimization is
performed until one of the two following termination criteria
is reached: (1) The optimization exceeds 5000 iterations, (2)
the difference (TolX) in qi/e and VCPD/ V between two sub-
sequent optimization steps is less than 10−6 and the change
(TolFun) in the rms difference between V min

bias,meas(z
min
ts ) and

V min
bias (zmin

ts ) is less than 1 pV for two subsequent iteration steps.
For a reliable charge quantification it is necessary to reach
criterion (2). The resulting V min

bias (zmin
ts ) curves are included

in Fig. 10(b) as dashed gray lines and perfectly match the
original V min

bias,meas(z
min
ts ) data. Correspondingly, the values for

quantities q0, q1, q2, and q3 as well as VCPD are retrieved
with high accuracy for all amplitudes as shown in Figs. 10(c)
and 10(d). Thus, for a central charge and a small number of
surrounding charges, the optimization routine perfectly recov-
ers the charge magnitudes.

B. Concept of effective charges

Much less favorable results are obtained when increasing
the number of surrounding charges; in this case the opti-
mization problem is overdetermined. We first illustrate this
challenge by a model calculation for an extended charge
distribution and in a second step introduce the concept of
effective surrounding charges as a solution.

First, 13 point charges qi are randomly placed in the sim-
ulation at radial distances Ri

q ranging from 25 nm to more
than 230 nm, in addition to the central charge q0. Charge
magnitudes are randomly chosen between −30e and −60e
and the corresponding PCPM is presented in Fig. 11(a). The
generated V min

bias,meas(z
min
ts ) curve data including the V min

bias (zmin
ts )

fits for different amplitudes are shown in Fig. 11(b). The
fits are in excellent agreement with the simulated V min

bias (zmin
ts )

data and the central charge q0 is accurately determined for

all oscillation amplitudes as shown in Fig. 11(c). In contrast,
the quantity VCPD [see Fig. 11(c)] as well as most of the
surrounding charges qi [see Fig. 11(d)] strongly deviate from
the original values and the sum of surrounding charges is not
reproduced correctly [see Fig. 11(d)]. These observations can
be traced to the properties of the weight function for charges
Wq averaging over charges in near proximity to each other
and the subsequent overdetermination of the optimization
problem.

A particularly illustrative example for the insensitivity of
Wq to neighboring charges can be identified from charges q5

and q6. As both charges are placed in close proximity to each
other at large Rq, their specific contribution to V min

bias (zmin
ts ) via

their respective Wq(�ri ) function is virtually indistinguishable.
Consequently, the large negative charge of q5 is counterbal-
anced by the large positive charge q6 and the fit routine aborts
after reaching the maximum number of allowed iterations.
Furthermore, we find that the zmin

ts dependence of Wq is not
significant for charges positioned at Ri

q > 100 nm. In the cur-
rent example, the fit routine finds a solution with charges at
Ri

q > 200 nm having very large magnitudes while VCPD is set
to a value close to zero.

Note, however, that the magnitude of the central charge
of interest is nonetheless well reproduced. This result sug-
gests that q0 yields the key contribution to V min

bias with a
zmin

ts dependence that is characteristic enough to provide the
correct result for the central charge. Based on this find-
ing, we seek for a stable solution yielding more realistic
results for the surrounding charges. To remove surplus fit
variables, we reduce the number of surrounding charges
by replacing them with effective point charges. In particu-
lar, all point charges at Ri

q > 200 nm are excluded as their
contribution is small and indistinguishable from VCPD. The
remaining point charges are subsumed into segments along
the Rq axis and reduced to effective charges. Positions of
these effective charges are determined as follows: The range
�Rq = Rmax

q − Rmin
q is calculated from the two point charges

positioned at the minimum radial distance Rmin
q and at the

maximum radial distance Rmax
q � 200 nm. Next, this range is

segmented into four intervals of increasing width, namely,
of 0.1�Rq, 0.2�Rq, 0.3�Rq, and 0.4�Rq. Finally, one
effective point charge is placed in each of these segments
at the average radial distance of point charges within the
respective segment. The use of an averaged position is most
reliable if the charges are of the same order of magnitude.

For the example in Fig. 11, the reduced PCPM is shown
in Fig. 12(a), consisting of the central charge and four ef-
fective surrounding charges (in red). This PCPM is used to
fit the V min

bias,meas(z
min
ts ) data calculated for the complete charge

distribution. As depicted in Fig. 12(b), fit results based on
the effective PCPM perfectly match the V min

bias,meas(z
min
ts ) curves

calculated for the full PCPM. Most importantly, the central
charge q0 is determined as −54.98 e [see Fig. 12(c)], in ex-
cellent agreement with the actual value of −55.00 e, while
VCPD is found to be 0.96 V, with a deviation of less than
5 % to the actual value of 1 V [see also Fig. 12(c)]. Due to
neglecting the charges at Rq > 200 nm, the latter deviation is
expected. Values for the charge magnitudes qeff

i are presented
in Fig. 12(d), together with the values of qeff

i,model that were
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calculated from the sum of all charges qi in the corresponding
interval. Both quantities are in good agreement for the inner
segments, while they deviate stronger for the outer segments.
This results in a slight overestimation of the sum of effective
charges

∑
qeff

i compared to the sum
∑

qeff
i,model. We explain

these observations in particular by the effective charge qeff
4 and

the VCPD value both compensating for the omitted charges at
Rq > 200 nm. By testing different tip models and by perform-
ing cross-check calculations covering a large set of charge
numbers and positions, we find that four effective charges
positioned as described yield the most reliable results.

In conclusion, the introduction of effective charges to re-
duce the number of dependent parameters to avoid unphysical
results is a robust approach for the quantification of the central
charge. For the herein presented model data, the reduction of
the 13 surrounding charges qi to four effective charges qeff

i
as shown in Fig. 12 is found to give the best result. While
less effective charges reduce the fit quality, more charges
lead to the described effects of dependent fit parameters. The
determination of the central charge magnitude q0 proved to
be robust in all trials, even if a single charge is located nearby
the central charge for a small number of surrounding charges
(see Appendix C, Fig. 17). Be aware that finding a stable
solution for difficult cases can necessitate a modification
of the starting parameters for the optimization routine.
However, the selection does not lead to a bias in the resulting
values. Instead, unphysical solutions are easily identified
from comparing the results for different probe oscillation

amplitudes: if the optimization algorithm is stuck in a local
minimum, single outliers are present for specific amplitudes.

VI. SUMMARY AND CONCLUSIONS

The analysis in this work identifies a number of param-
eters that influence the absolute value of the V min

bias voltage
in a charge force microscopy (CFM) experiment. It is found
that the CFM voltage signal is dependent on the oscillation
amplitude and the CFM technique yields best results for tips
with a small radius as well as substrates with a small dielec-
tric constant. Furthermore, the analysis confirms a substantial
contribution of charges in close vicinity of the tip apex to the
V min

bias signal, while the effect of charges far away from the tip
apex (including charges buried inside the dielectric sample)
are likely to appear as an offset to the contact potential differ-
ence in the V min

bias signal.
First and foremost, it becomes clear from this analysis that

taking a lateral map of V min
bias is insufficient for charge quantifi-

cation. Instead, the acquisition of vertical V min
bias (zmin

ts ) data is
necessary for obtaining reliable CFM results. For the general
case of a complex charge distribution at the surface or within
a sample, charge quantification can be realized by the follow-
ing four steps: First, the electrostatic model is determined,
for example, by a measurement of the cap-averaged second
capacitance gradient, to yield the weight function for charges.
Second, the point-charge positions are identified from
image data and the effective charge distribution is determined

(a) (b)

(I)

(II)

(I)

(II)

FIG. 13. Extended version of Fig. 7 highlighting the dependence of V min
bias on (a) the relative dielectric permittivity εs and (b) the tip radius

rsphere. Data for models S (SC) are presented in red (green) while data for model SCL are depicted in blue. Tinted colors are used to express the
respective parameter modification. Parameters are otherwise identical to those of Fig. 7.
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FIG. 14. Extended version of Fig. 8 highlighting the effect of the vertical charge position on V min
bias . Data for models S (SC) are presented in

red (green) while data for model SCL are depicted in blue. Tinted colors are used to express the different vertical position values. Parameters
are otherwise identical to those of Fig. 8.

from these data. Third, V min
bias (zmin

ts ) data are systematically
acquired at the position of the charge of interest for different
amplitudes of the cantilever oscillation. This approach enables
an inherent consistency check. Fourth, an optimization routine
is used to fit V min

bias curve data to the measurement results with
the charge magnitudes qi as well as VCPD as fit parameters.

In conclusion, the CFM method holds the strong promise
to offer charge quantification in numerous systems of funda-
mental and applied research, and by further refinement of this
method, it can be expected to obtain accurate results for all
relevant experimental situations.
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APPENDIX A: PARAMETER ANALYSIS FOR FURTHER
TIP GEOMETRIES

Simulation results for the S and SC model in addition to
the SCL geometry are presented in Figs. 13–15. In particular,
Fig. 13 presentes the dependency of V min

bias on the dielectric
constant of the substrace εs and on the tip sphere radius rsphere.
Data for only the SCL model are shown in Fig. 7 in the main
text. In Fig. 14, the V min

bias signal is evaluated for different verti-
cal charge positions and for the S, SC, and SCL models. This

figure is a generalisation of Fig. 8 in the main text. Figure 15
shows V min

bias for different vertical charge positions, also for the
S, SC, and SCL models as an extension of Fig. 9 in the main
text.

tip sphere

(a)

(b)

charge position

FIG. 15. Extended version of Fig. 9 highlighting the effect of the
lateral charge position on V min

bias . Data for models S (SC) are presented
in red (green) while data for model SCL are depicted in blue. Tinted
colors are used to express the lateral position values. Parameters are
otherwise identical to those of Fig. 9.
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PCPM

FIG. 16. Exemplary CFM experiment simulation with point charges in the range of −1e to −5e. (a) Point-charge position map (PCPM),
(b) V min

bias,meas data as a function of the minimum tip-sample distance zmin
ts , (c) model and resulting values for the fit parameters q0 and VCPD as a

function of the amplitude A and (d) model and resulting values for the surrounding charges qi (i = 1, 2, 3) and their sum as a function of the
amplitude A.

APPENDIX B: SIMULATION WITH SMALL CHARGE
MAGNITUDES

Figure 16 presents one example of a simulated CFM ex-
periment with point-charge magnitudes randomly chosen in
the range of −1e to −5e. Excellent fit results are obtained.

APPENDIX C: SENSITIVITY TO NEARBY CHARGES

As shown in Fig. 17, CFM delivers excellent fit results for
few charges located nearby the tip even if these charges are
separated by only 2 nm.

085420-15



HEILE, OLBRICH, REICHLING, AND RAHE PHYSICAL REVIEW B 108, 085420 (2023)

FIG. 17. Sensitivity to nearby charges. (a) Point-charge position map (PCPM), (b) V min
bias,meas data as a function of the minimum tip-sample

distance zmin
ts , (c) model and resulting values for the fit parameters q0 and VCPD as a function of the amplitude A, (d) model and resulting values

for the surrounding charges qi (i = 1, 2, 3) and their sum as a function of the amplitude A.
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